ENGINEERING MATHEMATICS-I

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 -2018)

SEMESTER - I

Course Code	:	17MATI1	CIE Marks	•	40
Number of Lecture Hours/Week	1	04	SEE Marks	-	60
Total Number of Lecture Hours	:	50	Exam Hours	1	03

Course Objectives:

To enable the students to apply the knowledge of Mathematics in various engineering fields by making them to learn the following:

- nth derivatives of product of two functions and polar curves.
- Partial derivatives
- * Vector calculus
- Reduction formulae of integration; To solve First order differential equations.
- Solution of system of linear equations, quadratic forms.

Module - 1

Hours - 10

Differential Calculus -1:

Determination of nth order derivatives of Standard functions - Problems. Leibnitz's theorem (without proof) - problems.

Polar Curves - angle between the radius vector and tangent, angle between two curves, Pedal equation of polar curves. Derivative of arc length - Cartesian, Parametric and Polar forms (without proof) - problems. Curvature and Radius of Curvature - Cartesian, Parametric, Polar and Pedal forms (without proof) - problems

Module - 2

Hours - 10

Differential Calculus -2:

では、神経をからないとなっていればないというとう

Taylor's and Maclaurin's theorems for function of one variable(statement only)-problems. Evaluation of Indeterminate forms.

Partial derivatives – Definition and simple problems, Euler's theorem (without proof) – problems, total derivatives, partial differentiation of composite functions-problems. Definition and evaluation of Jacobians

Vector Calculus:

Derivative of vector valued functions, Velocity, Acceleration and related problems, Scalar and Vector point functions. Definition of Gradient, Divergence and Curl-problems. Solenoidal and Irrotational vector fields. Vector identities - $\operatorname{div}(\Phi A)$, $\operatorname{curl}(\Phi A)$, $\operatorname{curl}(\operatorname{grad}\Phi)$, $\operatorname{div}(\operatorname{curl} A)$.

Module - 4

Hours - 10

Integral Calculus:

Reduction formula $\int \sin^n x \, dx$, $\int \cos^n x \, dx$, $\int \sin^m x \cos^n x \, dx$ (m and n are positive integers), evaluation of these integrals with standard limits (0 to $\pi/2$) and problems.

Differential Equations;

Solution of first order and first degree differential equations — Exact, reducible to exact and Bernoulli's differential equations. Orthogonal trajectories in Cartesian and polar form. Simple problems on Newton's law of cooling.

Module - 5

Hours - 10

Linear Algebra

Rank of a matrix by elementary transformations, solution of system of linear equations - Gauss-elimination method, Gauss -Jordan method and Gauss-Seidel method.

Eigen values and Eigen vectors, Rayleigh's power method to find the largest Eigen value and the corresponding Eigen vector. Linear transformation, diagonal-isation of a square matrix. Reduction of Quadratic form to Canonical form

Course outcomes:

On completion of this course, students are able to

- * Use partial derivatives to calculate rates of change of multivariate functions.
- * Analyze position, velocity, and acceleration in two or three dimensions using the calculus of vector valued functions.
- * Recognize and solve first-order ordinary differential equations, Newton's law of cooling
- * Use matrices techniques for solving systems of linear equations in the different areas of Linear Algebra.

Question paper pattern:

- * The question paper will have ten questions.
- * Each full Question consisting of 20 marks
- * There will be 2 full questions (with a maximum of four sub questions) from each module.

- Each full question will have sub questions covering all the topics under a module.
- * The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- B.S. Grewal, "Higher Engineering Mathematics", Khanna publishers, 42nd edition, 2013.
- Erwin Kreyszig, "Advanced Englneering Mathematics I," Wiley, 2013

Reference Books:

- 1. B.V. Ramana, "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006
- 2. N.P.Bali and Manish Goyal, "A text book of Engineering mathematics", Laxmi publications, latest edition.
- 3. H.K. Dass and Er. Rajnish Verma, "Higher Engineerig Mathematics", S. Chand publishing, 1st edition, 2011.

De f

H.O.D.

Dept. Of Physics
Dept. Of Engg. & Technologs
Alva's Institute of Engg. 8. Technologs
Mijar, MOODBIDRI - 574 225