ENGINEERING MATHEMATICS-I

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016)

	TA Marks	20
15MAT11	IA Marks	
	Exam Marks	80
04		00
		03
50	Exam Hours	00
	15MAT11 04	04 Exam Marks

CREDITS - 04

Course Objectives:

To enable the students to apply the knowledge of Mathematics in various engineering fields by making them to learn the following:

- nth derivatives of product of two functions and polar curves.
- Partial derivatives
- Vector calculus
- Reduction formulae of integration; To solve First order differential equations.
- Solution of system of linear equations, quadratic forms.

Module - 1	Hours - 10
Differential Calculus -1: determination of nth order derivatives of	
Standard functions - Problems. Leibnitz's theorem (without proof) - problems.	
Polar Curves - angle between the radius vector and tangent, angle between two curves, Pedal equation of polar curves. Derivative of arc length - Cartesian, Parametric and Polar forms (without proof) - problems. Curvature and Radius of Curvature - Cartesian, Parametric, Polar and Pedal forms (without proof) -problems	
Module -2	

	Hours - 10
Taylor's and Maclaurin's theorems for function of one	
variable(statement only)- problems. Evaluation of Indeterminate	
forms.	
Partial derivatives - Definition and simple problems, Euler's	
theorem(without proof) - problems, total derivatives, partial	
differentiation of composite functions-problems. Definition and	
evaluation of Jacobians	
Module – 3	
	Hours - 10
Vector Calculus:	
Derivative of vector valued functions, Velocity, Acceleration and	
related problems, Scalar and Vector point functions. Definition of	
Gradient, Divergence and Curl-problems. Solenoidal and	
Irrotational vector fields. Vector identities - $div(\phi A)$, curl (ϕA) ,	ettles,
curl(grad φ), div(curl A).	
Module-4	
Integral Calculus:	Hours - 10
Reduction formulae - $\int Sin^n x dx$, $\int Cos^n x dx$, $\int Sin^m x Cos^n x dx$, (m	
and n are positive integers), evaluation of these integrals with	
standard limits (0 to $\pi/2$) and problems.	
Differential Equations ;	
Solution of first order and first degree differential equations	
- Exact, reducible to exact and Bernoulli's differential equations	1
Orthogonal trajectories in Cartesian and polar form. Simple	
	:
problems on Newton's law of cooling.	
problems on Newton's law of cooling. Module-5	

Rank of a matrix by elementary transformations, solution of system of linear equations - Gauss-elimination method, Gauss - Jordan method and Gauss-Seidel method

Eigen values and Eigen vectors, Rayleigh's power method to find the largest Eigen value and the corresponding Eigen vector.

Linear transformation, diagonalisation of a square matrix.

Reduction of Quadratic form to Canonical form

Course outcomes:

On completion of this course, students are able to

- Use partial derivatives to calculate rates of change of multivariate functions.
- Analyze position, velocity, and acceleration in two or three dimensions using the calculus of vector valued functions.
- Recognize and solve first-order ordinary differential equations, Newton's law of cooling
- Use matrices techniques for solving systems of linear equations in the different areas of Linear Algebra.

Question paper pattern:

- · The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna publishers, 42nd edition, 2013.

2. Erwin Kreyszig, "Advanced Engineering MathematicsI, Wiley, 2013

Reference Books:

- B.V. Ramana, "Higher Engineering M athematics", Tata Mc Graw-Hill, 2006
- N.P.Bali and Manish Goyal, "A text book of Engineering mathematics", Laxmi publications, latest edition.
- H.K. Dass and Er. RajnishVerma, "Higher Engineerig Mathematics",
 S.Chand publishing, 1st edition, 2011.

Alva's Institute of Engg. & Technicles:
Mijar, MOODBIDRI - 574 22%