B. E. MECHANICAL ENGINEERING

Outcome Based Education (OBE) and Choice Based Credit System (CBCS) **SEMESTER - III**

ADDITIONAL MATHEMATICS - I

(Mandatory Learning Course: Common to All Programmes)

(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech. programmes)

Course Code	18MATDIP31	CIE Marks 40	
Teaching Hours/Week (L:T:P)	(2:1:0)	SEE Marks	60
Credits	0	Exam Hours	03

Course Learning Objectives:

- To provide basic concepts of complex trigonometry, vector algebra, differential and integral calculus.
- To provide an insight into vector differentiation and first order ODE's.

Module-1

Complex Trigonometry: Complex Numbers: Definitions and properties. Modulus and amplitude of a complex number, Argand's diagram, De-Moivre's theorem (without proof).

Vector Algebra: Scalar and vectors. Addition and subtraction and multiplication of vectors- Dot and Cross products, problems.

Module-2

Differential Calculus: Review of elementary differential calculus. Polar curves -angle between the radius vector and the tangent pedal equation- Problems. Maclaurin's series expansions, problems.

Partial Differentiation: Euler's theorem for homogeneous functions of two variables. Total derivatives differentiation of composite function. Application to Jacobians of order two.

Module-3

Vector Differentiation: Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl and Laplacian (Definitions only). Solenoidal and irrotational vector fields-Problems.

Module-4

Integral Calculus: Review of elementary integral calculus. Statement of reduction formulae for $\sin^n x$, $\cos^n x$, and $\sin^m x \times \cos^n x$ and evaluation of these with standard limits-Examples. Double and triple integrals, problems.

Module-5

Ordinary differential equations (ODE's): Introduction-solutions of first order and first degree differential equations: Variable Separable methods, exact and linear differential equations of order one. Application to Newton's law of cooling.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Apply concepts of complex numbers and vector algebra to analyze the problems arising in related area.
- CO2: Use derivatives and partial derivatives to calculate rate of change of multivariate functions.
- CO3: Analyze position, velocity and acceleration in two and three dimensions of vector valued CO4: Learn techniques of integration including the evaluation of double and triple functions. integrals.
- CO5: Identify and solve first order ordinary differential equations.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.

There will be two full questions (with a maximum of four sub-questions) if

Sl. No.	Title of the Book	Name of the Author/s	Name of the	Edition and Year
Textboo				
1	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	43 rd Edition, 2015

B. E. MECHANICAL ENGINEERING

Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER - IV

COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS

(Common to all programmes)

[As per Choice Based Credit System (CBCS) scheme]

Course Code	18MAT41	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- To provide an insight into applications of complex variables, conformal mapping and special functions arising in potential theory, quantum mechanics, heat conduction and field theory.
- To develop probability distribution of discrete, continuous random variables and joint probability distribution occurring in digital signal processing, design engineering and microwave engineering.

Module-1

Calculus of complex functions: Review of function of a complex variable, limits, continuity, and differentiability. Analytic functions: Cauchy-Riemann equations in Cartesian and polar forms and consequences.

Construction of analytic functions: Milne-Thomson method-Problems.

Module-2

Conformal transformations: Introduction. Discussion of transformations: $w = Z^2$, $w = e^z$, $w = z + \frac{1}{r}$, $(z \neq 0)$. Bilinear transformations- Problems.

Complex integration: Line integral of a complex function-Cauchy's theorem and Cauchy's integral formula and problems.

Module-3

Probability Distributions: Review of basic probability theory. Random variables (discrete and continuous), **probability mass/density functions.** Binomial, Poisson, exponential and normal distributions- problems (No **derivation for mean and standard deviation)**-Illustrative examples.

Module-4

Statistical Methods: Correlation and regression-Karl Pearson's coefficient of correlation and rank correlation -problems. Regression analysis- lines of regression -problems.

Curve Fitting: Curve fitting by the method of least squares- fitting the curves of the form-

y = ax + b, $y = ax^b$ and $y = ax^2 + bx + c$.

Module-5

Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation and covariance.

Sampling Theory: Introduction to sampling distributions, standard error, Type-I and Type-II errors. Test of hypothesis for means, student's t-distribution, Chi-square distribution as a test of goodness of fit.

Course Outcomes:

At the end of the course the student will be able to:

- Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory.
- Utilize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing.
- Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering field.
- Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data.
- Construct joint probability distributions and demonstrate the validity of testing the hypothesis.

Question paper pattern:

Dept. Of Mechanical Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225

- · The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- · There will be two full questions (with a maximum of four sub- questions) from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	oks			
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition,2016
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition, 2017
3	Engineering Mathematics	Srimanta Pal et al	Oxford University Press	3 rd Edition,2016
Referen	ce Books			
1	Advanced Engineering Mathematics	C. Ray Wylie, Louis C.Barrett	McGraw-Hill	6 th Edition 1995
2	Introductory Methods of Numerical Analysis	S.S.Sastry	Prentice Hall of India	4 th Edition 2010
3	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill	11 th Edition,2010
4	A Text Book of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	2014

Web links and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.class-central.com/subject/math(MOOCs)
- 3. http://academicearth.org/
- 4. VTU EDUSAT PROGRAMME 20

Dept. Of Machanical Engineering
Alva's Institute of Engil & Technology
Mijar, MOODBIDIO - 574 725