ENERGY LAB

B.E, V Semester, Mechanical Engineering [As per Choice Based Credit System (CBCS) scheme]

Course Code	17MEL58	CIE Marks	12
Number of Lecture Hours/Week	02 / 1 Hann Instance of a 1 2 Tr		40
rvamber of Dectare Hours/ week	03 (1 Hour Instruction+ 2 Hours Laboratory)	SEE Marks	60
Total hours	50	Exam Hours	62
Credits - 02			03

Course Objectives:

- 1. This course will provide a basic understanding of fuel properties and its measurements using various types of measuring devices
- 2. Energy conversion principles, analysis and understanding of I C Engines will be discussed. Application of these concepts for these machines will be demonstrated. Performance analysis will be carried out using characteristic curves.
- 3. Exhaust emissions of I C Engines will be measured and compared with the standards.

PART A

- 1. Lab layout, calibration of instruments and standards to be discussed
- 2. Determination of Flash point and Fire point of lubricating oil using Abel Pensky and Marten's (closed) / Cleveland's (Open Cup) Apparatus.
- 3. Determination of Calorific value of solid, liquid and gaseous fuels.
- Determination of Viscosity of a lubricating oil using Redwoods, Sayboltand Torsion Viscometers.
- 5. Analysis of moisture, volatile matter, ash content and fixed carbon of solid and liquid fuel samples
- 6. Valve Timing/port opening diagram of an I.C. Engine.

PART B

- 1. Performance Tests on I.C. Engines, Calculations of IP, BP, Thermal efficiency, Volumetric efficiency, Mechanical efficiency, SFC, FP, A:F Ratio, heat balance sheet for
 - a. Four stroke Diesel Engine
 - b. Four stroke Petrol Engine
 - c. Multi Cylinder Diesel/Petrol Engine, (Morse test)
 - d. Two stroke Petrol Engine
 - e. Variable Compression Ratio I.C. Engine.
- 2. Measurements of Exhaust Emissions of Petrol engine.
- 3. Measurements of Exhaust Emissions of Diesel engine.

4. Demonstration of pθ, pV plots usingComputatized IC engine test rig

PART C(Optional)

- 1. Visit to Automobile Industry/service stations.
- 2. CFD Analysis of design, development, performance evaluation and process optimization in I C Engines.

Course outcomes:

- Perform experiments to determine the properties of fuels and oils.
- Conduct experiments on engines and draw characteristics.
- Test basic performance parameters of I.C. Engine and implement the knowledge in industry.
- Identify exhaust emission, factors affecting them and report the remedies.
- Determine the energy flow pattern through the I C Engine
- Exhibit his competency towards preventive maintenance of IC engines.
- 1. E.F.Obert, Internal combustion engines and air pollution intext educational publishers (1973). John Heywood, Internal combustion engine fundamentals, McGraw-Hill (1988) - USA.
- 2. Colin R Ferguson and Allan T. Kirkpatrick Internal combustion engines Applied Thermodynamics, John Wiley & sons 2001.
- 3. Richard stone, Introduction to internal combustion engines, MacMillan (1992) USA
- 4. M. L. Mathur And R.P. Sharma A course in internal combustion engines, Dhanpat Rai & sons- India.
- 5. C. F. Taylor The internal combustion engines in theory and practice, 2 vols. by:, pub.: Wily.
- 6. C. F. Taylor The internal combustion engines in theory and practice, 2 vols. by:, pub.: Wily.
- 7. Ganesan, V., Fundamentals of IC Engines, Tata McGraw Hill, 2003
- 8. Bosch, Automotive hand book, 9th edition.

Scheme of Examination:

ONE question from part -A: 50 Marks ONE question from part -B: 30 Marks Viva -Voice : 20 Marks

Total: 100 Marks

Dept. Of Mechanical Engineering Alva's institute of Engg. & Technology Mijar, MOCOBIDRI - 574 Zau