DBMS LABORATORY WITH MINI PROJECT (Effective from the academic year 2018 -2019)

SEMESTER - V

Course Code	18CSL58	CIE Marks	40
Number of Contact Hours/Week	0:2:2	SEE Marks	60
Total Number of Lab Contact Hours	36	Exam Hours	03

Credits - 2

Course Learning Objectives: This course (18CSL58) will enable students to:

- Foundation knowledge in database concepts, technology and practice to groom students into well-informed database application developers.
- Strong practice in SQL programming through a variety of database problems.
- Develop database applications using front-end tools and back-end DBMS.

Descriptions (if any):

PART-A: SQL Programming (Max. Exam Mks. 50)

- Design, develop, and implement the specified queries for the following problems using Oracle, MySQL, MS SQL Server, or any other DBMS under LINUX/Windows environment.
- Create Schema and insert at least 5 records for each table. Add appropriate database constraints.

PART-B: Mini Project (Max. Exam Mks. 30)

Use Java, C#, PHP, Python, or any other similar front-end tool. All applications must be demonstrated on desktop/laptop as a stand-alone or web based application (Mobile apps on Android/IOS are not permitted.)

Installation procedure of the required software must be demonstrated, carried out in groups and documented in the journal.

Programs List:

PART A

1. Consider the following schema for a Library Database:

BOOK(Book id, Title, Publisher Name, Pub Year)

BOOK_AUTHORS(Book id, Author Name)

PUBLISHER(Name, Address, Phone)

BOOK_COPIES(Book_id, Programme_id, No-of_Copies)

BOOK_LENDING(Book_id, Programme_id, Card_No, Date_Out, Due_Date)

LIBRARY_PROGRAMME(Programme id. Programme Name, Address)

Write SQL queries to

- 1. Retrieve details of all books in the library id, title, name of publisher, authors, number of copies in each Programme, etc.
- Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017.
- 3. Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation operation.
- 4. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.
- 5. Create a view of all books and its number of copies that are currently available in the Library.
- 2. Consider the following schema for Order Database:

SALESMAN(Salesman id, Name, City, Commission)

CUSTOMER(Customer id, Cust_Name, City, Grade, Salesman id)

ORDERS(Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)

Write SQL queries to

	 Count the customers with grades above Bangalore's average.
	Find the name and numbers of all salesman who had more than one customer.
	3. List all the salesman and indicate those who have and don't have customers in
	their cities (Use UNION operation.)
	4. Create a view that finds the salesman who has the customer with the highest order
	of a day.
	5. Demonstrate the DELETE operation by removing salesman with id 1000. All
	his orders must also be deleted.
3.	Consider the schema for Movie Database:
	ACTOR(Act_id, Act_Name, Act_Gender)
	DIRECTOR(Dir id, Dir Name, Dir Phone)
	MOVIES(Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id)
	MOVIE_CAST(Act_id, Mov_id, Role)
	RATING(Mov_id, Rev_Stars)
	Write SQL queries to
	List the titles of all movies directed by 'Hitchcock'.
	2. Find the movie names where one or more actors acted in two or more movies.
	List all actors who acted in a movie before 2000 and also in a movie after 2015
	(use JOIN operation).
	 Find the title of movies and number of stars for each movie that has at least one
	rating and find the highest number of stars that movie received. Sort the result by
	movie title.
	Update rating of all movies directed by 'Steven Spielberg' to 5.
4.	Consider the schema for College Database:
	STUDENT(USN, SName, Address, Phone, Gender)
	SEMSEC(SSID, Sem, Sec)
	CLASS(USN, SSID)
	COURSE(Subcode, Title, Sem, Credits)
	IAMARKS(USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)
	Write SQL queries to
	1. List all the student details studying in fourth semester 'C' section.
	2. Compute the total number of male and female students in each semester and in
	each section.
	3. Create a view of Test1 marks of student USN '1BI15CS101' in all Courses.
	Calculate the FinalIA (average of best two test marks) and update the
	corresponding table for all students.
	5. Categorize students based on the following criterion:
	If FinalIA = 17 to 20 then CAT = 'Outstanding'
	If FinalIA = 12 to 16 then CAT = 'Average'
	If FinalIA < 12 to 16 then CAT = 'Weak'
5.	Give these details only for 8th semester A, B, and C section students.
٥.	Consider the schema for Company Database:
	EMPLOYEE(SSN, Name, Address, Sex, Salary, SuperSSN, DNo)
	DEPARTMENT(<u>DNo</u> , DName, MgrSSN, MgrStartDate)
	DLOCATION(<u>DNo,DLoc</u>)
	PROJECT(PNo, PName, PLocation, DNo)
	WORKS_ON(SSN, PNo, Hours)
	Write SQL queries to
	 Make a list of all project numbers for projects that involve an employee whose
	last name is 'Scott', either as a worker or as a manager of the department that
1	controls the project.

- Show the resulting salaries if every employee working on the 'loT' project is given a 10 percent raise.
- Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department
- Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator).
- For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000.

PART B: Mini Project

- For any problem selected
- Make sure that the application should have five or more tables
- Indicative areas include; health care

Laboratory Outcomes: The student should be able to:

- Create, Update and query on the database.
- Demonstrate the working of different concepts of DBMS
- Implement, analyze and evaluate the project developed for an application.

Conduct of Practical Examination:

- Experiment distribution
 - For laboratories having only one part: Students are allowed to pick one experiment from the lot with equal opportunity.
 - For laboratories having PART A and PART B: Students are allowed to pick one experiment from PART A and one experiment from PART B, with equal opportunity.
- Change of experiment is allowed only once and marks allotted for procedure to be made zero of the changed part only.
- Marks Distribution (Courseed to change in accordance with university regulations)
 - k) For laboratories having only one part Procedure + Execution + Viva-Voce: 15+70+15 = 100 Marks
 - l) For laboratories having PART A and PART B
 - i. Part A Procedure + Execution + Viva = 6 + 28 + 6 = 40 Marks
 - ii. Part B Procedure + Execution + Viva = 9 + 42 + 9 = 60 Marks

Dept. Of Information, "A France Program

Alva's Institute of Engly, & Technology

Mijar, MOODBIDRI - 574 225