B. E. Common to all Programmes Outcome Based Education (OBE) and Choice Based Credit System (CBCS) **SEMESTER - IV**

ADDITIONAL MATHEMATICS – II

(Mandatory Learning Course: Common to All Programmes)

	(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech. programmes) Course Code 18MATDIP41								
	Course Code	18MATDIP41	CIE Marks						
Ì	Teaching Hours/Week (L:T:P)	(2:1:0)	SEE Morles	40					

	Course Code	1075	pioma quota to BE/I	3. Tech. programmes)
	Teaching Hours/Week (L:T:P)	TOWIA I DIP41	CIE Marks	40
	Credits	(2:1:0)	SEE Marks	60
	Course Learning Objectives:	0	Exam Hours	03
- 1	g - Jeelives.			

- To provide essential concepts of linear algebra, second & higher order differential equations along with
- To provide an insight into elementary probability theory and numerical methods.

Module-1

Linear Algebra: Introduction - rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and Eigen vectors of a square matrix.

Module-2

Numerical Methods: Finite differences. Interpolation/extrapolation using Newton's forward and backward difference formulae (Statements only)-problems. Solution of polynomial and transcendental equations Newton-Raphson and Regula-Falsi methods (only formulae)- Illustrative examples. Numerical integration: Simpson's one third rule and Weddle's rule (without proof) Problems.

Higher order ODE's: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators. [Particular Integral restricted to $R(x) = e^{ax}$, $\sin ax / \cos ax$ for f(D)y = R(x)

Module-4

Partial Differential Equations (PDE's):- Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only.

Module-5

Probability: Introduction. Sample space and events. Axioms of probability. Addition & multiplication theorems. Conditional probability, Bayes's theorem, problems.

Course Outcomes: At the end of the course the student will be able to:

CO1: Solve systems of linear equations using matrix algebra.

CO2: Apply the knowledge of numerical methods in modelling and solving engineering problems.

CO3: Make use of analytical methods to solve higher order differential equations.

CO4: Classify partial differential equations and solve them by exact methods.

CO5: Apply elementary probability theory and solve related problems.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	tbook			
1	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	43 rd Edition, 2015
Refe	erence Books			
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2015
2	Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publishers	7th Edition, 2007
3	Engineering Mathematics Vol. I	Rohit Khurana	Cengage Learning	1 st Edition, 2015

H. &TD.

Dept. Of Informatica Common & Engineering
Alva's Institute of Engal & Technology
Niijar, MOODBIDRI - 574 225