DESIGN AND ANALYSIS OF ALGORITHMS (Effective from the academic year 2018 -2019) SEMESTER - IV Course Code 18CS42 **CIE Marks** 40 **Number of Contact Hours/Week** 3:2:0 **SEE Marks Total Number of Contact Hours** 60 50 **Exam Hours** 03 CREDITS-4

Course Learning Objectives: This course (18CS42) will enable students to:

- Explain various computational problem solving techniques.
- Apply appropriate method to solve a given problem.
- Describe various methods of algorithm analysis.

Module 1	Contac Hours
Introduction: What is an Algorithm? (T2:1.1), Algorithm Specification (T2:1.2), Analysis Framework (T1:2.1), Performance Analysis: Space complexity, Time complexity (T2:1.3). Asymptotic Notations: Big-Oh notation (O) , Omega notation (Ω) , Theta notation (O) , and Little-oh notation (O) , Mathematical analysis of Non-Recursive and recursive Algorithms with Examples (T1:2.2, 2.3, 2.4). Important Problem Types: Sorting, Searching, String processing, Graph Problems, Combinatorial Problems. Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries. (T1:1.3,1.4).	10
Module 2	
Divide and Conquer : General method, Binary search, Recurrence equation for divide and conquer, Finding the maximum and minimum (T2:3.1 , 3.3 , 3.4), Merge sort, Quick sort (T1:4.1 , 4.2), Strassen's matrix multiplication (T2:3.8), Advantages and Disadvantages of divide and conquer. Decrease and Conquer Approach : Topological Sort. (T1:5.3). RBT: L1, L2, L3	10
Module 3	
Greedy Method: General method, Coin Change Problem, Knapsack Problem, Job sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm (T1:9.1, 9.2). Single source shortest paths: Dijkstra's Algorithm (T1:9.3). Optimal Tree problem: Huffman Trees and Codes (T1:9.4). Transform and Conquer Approach: Heaps and Heap Sort (T1:6.4).	10
Module 4	
Dynamic Programming: General method with Examples, Multistage Graphs (T2:5.1, 5.2).	
Transitive Closure: Warshall's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optimal Binary Search Trees, Knapsack problem ((T1:8.2, 8.3, 8.4), Bellman-Ford Algorithm (T2:5.4), Travelling Sales Person problem (T2:5.9), Reliability design (T2:5.8). RBT: L1, L2, L3 Module 5	10
Racktracking: Conord mathed (TO T 4)	
Bound: Assignment Problem, Travelling Sales Person problem (T1:12.2), 0/1 Knapsack problem (T2:8.2, T1:12.2): LC Programme and Bound solution (T2:8.2), FIFO Programme and Bound solution (T2:8.2). NP-Complete and NP-Hard problems: Basic concepts, non-leterministic algorithms, P, NP, NP-Complete, and NP-Hard classes (T2:11.1).	10
Course Outcomes: The student will be able to:	
 Describe computational solution to well known problems like searching, sorting etc. 	

- · Estimate the computational complexity of different algorithms.
- Devise an algorithm using appropriate design strategies for problem solving.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

- Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009. Pearson.
- Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press

Reference Books:

- Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI.
- 2. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).

Dept. Of Information Engineering

Section 1099

Alva's Institute of Mijar, MOODBIDRI - 574 225