B. E. Common to all Programmes Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER - III

ADDITIONAL MATHEMATICS – I

(Mandatory Learning Course: Common to All Programmes)

(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech. programmes)

Course Code	students under Diploma quota to BE/B. Tech. programmes)			
Teaching Hours/Week (L:T:P)	18MATDIP31	CIE Marks	40	
Credits	(2:2:0)	SEE Marks	60	
Course Learning Objectives	0	Exam Hours	03	

Course Learning Objectives:

- To provide basic concepts of complex trigonometry, vector algebra, differential and integral calculus.
- To provide an insight into vector differentiation and first order ODE's.

Module-1

Complex Trigonometry: Complex Numbers: Definitions and properties. Modulus and amplitude of a complex number, Argand's diagram, De-Moivre's theorem (without proof).

Vector Algebra: Scalar and vectors. Addition and subtraction and multiplication of vectors- Dot and Cross

Module-2

Differential Calculus: Review of successive differentiation-illustrative examples. Maclaurin's series expansions-Illustrative examples. Partial Differentiation: Euler's theorem-problems on first order derivatives only. Total derivatives-differentiation of composite functions. Jacobians of order two-Problems.

Module-3

Vector Differentiation: Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl-simple problems. Solenoidal and irrotational vector fields-Problems.

Module-4

Integral Calculus: Review of elementary integral calculus. Reduction formulae for sinⁿx, cosⁿx (with proof) and sin^mxcosⁿx (without proof) and evaluation of these with standard limits-Examples. Double and triple integrals-Simple examples. Module-5

Ordinary differential equations (ODE's. Introduction-solutions of first order and first-degree differential equations: exact, linear differential equations. Equations reducible to exact and Bernoulli's equation.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Apply concepts of complex numbers and vector algebra to analyze the problems arising in
- CO2: Use derivatives and partial derivatives to calculate rate of change of multivariate functions.
- CO3: Analyze position, velocity and acceleration in two and three dimensions of vector valued
- CO4: Learn techniques of integration including the evaluation of double and triple integrals.
- CO5: Identify and solve first order ordinary differential equations.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each

CI	Will have to disw	ref five full questions, selecti	ng one full question from	m each modula
151		Name of the		cuen module.
No	Title of the Book	Author/s	Name of the	P. W.
			i vaine of the	Edition and Vear

Text	book		Publisher	
l Refe	Higher Engineering Mathematics rence Books	B. S. Grewal	Khanna Publishers	43 rd Edition, 2015
1 2	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2015
	Engineering Mathematics	N. P .Bali and Manish Goyal	Laxmi Publishers	7th Edition, 2007
,	Engineering Mathematics Vol. I	Rohit Khurana	Cengage Learning	1 st Edition, 2015

Dept. Of Information Science & Engineering or Tochnology
Alva's Institute of Tochnology

Alva's Institute of Tochnology

Alva's Institute of Tochnology