ANALOG AND DIGITAL ELECTRONICS (Effective from the academic year 2018 -2019)

SEMESTER - III

		***		- 1
Course Code	18CS33	CIE Marks	40	1
Number of Contact Hours/Week	3:0:0	SEE Marks	60	+
Total Number of Contact Hours	40	Exam Hours	03	1

CREDITS -3

Course Learning Objectives: This course (18CS33) will enable students to:

- Explain the use of photoelectronics devices, 555 timer IC, Regulator ICs and uA741 opamap IC
- Make use of simplifying techniques in the design of combinational circuits.
- Illustrate combinational and sequential digital circuits
- Demonstrate the use of flipflops and apply for registers
- Design and test counters, Analog-to-Digital and Digital-to-Analog conversion techquiues.

Module 1	Contact Hours
Photodiodes, Light Emitting Diodes and Optocouplers ,BJT Biasing :Fixed bias ,Collector to	08
base Bias, voltage divider bias, Operational Amplifier Application Circuits: Multivibrators	08
using IC-555, Peak Detector, Schmitt trigger, Active Filters, Non-Linear Amplifier,	
Relaxation Oscillator, Current-to-Voltage and Voltage-to-Current Converter, Regulated	
Power Supply Parameters, adjustable voltage regulator, D to A and A to D converter.	
Text Book 1 :Part A:Chapter 2(Section 2.9,2.10,2.11), Chapter 4(Section 4.2)	
4.2,4.3,4.4), Chapter 7 (section (7.2,7.3.1,7.4,7.6 to 7.11), Chapter 8 (section (8.1,8.5),	
Chapter 9 (section (7.2,7.3.1,7.4,7.6 to 7.11), Chapter 8 (section (8.1,8.5),	
RBT: L1, L2	
Module 2	
	00
Karnaugh maps: minimum forms of switching functions, two and three variable Karnaugh	08
maps, four variable karnaugh maps, determination of minimum expressions using essential	
prime implicants, Quine-McClusky Method: determination of prime implicants, The prime	
implicant chart, petricks method, simplification of incompletely specified functions,	
simplification using map-entered variables	
Text book 1:Part B: Chapter 5 (Sections 5.1 to 5.4) Chapter 6(Sections 6.1 to 6.5)	
RBT: L1, L2	
Module 3	
Combinational circuit design and simulation using gates: Review of Combinational circuit	08
design, design of circuits with limited Gate Fan-in ,Gate delays and Timing diagrams,	
Hazards in combinational Logic, simulation and testing of logic circuits	
Multiplexers, Decoders and Programmable Logic Devices: Multiplexers, three state buffers,	
decoders and encoders, Programmable Logic devices, Programmable Logic Arrays,	
Programmable Array Logic.	
Text book 1:Part B: Chapter 8,Chapter 9 (Sections 9.1 to 9.6)	
RBT: L1, L2	
Module 4	
Introduction to VHDL: VHDL description of combinational circuits, VHDL Models for	08
multiplexers, VHDL Modules.	
Latches and Flip-Flops: Set Reset Latch, Gated Latches, Edge-Triggered D Flip Flop 3,SR	
Flip Flop, J K Flip Flop, T Flip Flop, Flip Flop with additional inputs, Asynchronous	
Sequential Circuits	
Text book 1:Part B: Chapter 10(Sections 10.1 to 10.3), Chapter 11 (Sections 11.1 to 11.9)	
RBT: L1, L2	

Module 5	T
Registers and Counters: Registers and Register Transfers, Parallel Adder with accumulator, shift registers, design of Binary counters, counters for other sequences, counter design using SR and J K Flip Flops, sequential parity checker, state tables and graphs Text book 1:Part B: Chapter 12(Sections 12.1 to 12.5), Chapter 13(Sections 13.1,13.3 RBT: L1, L2	08
Course Outcomes: The student will be able to :	

Course Outcomes: The student will be able to:

- Design and analyze application of analog circuits using photo devices, timer IC, power supply and regulator IC and op-amp.
- Explain the basic principles of A/D and D/A conversion circuits and develop the same.
- Simplify digital circuits using Karnaugh Map, and Quine-McClusky Methods
- Explain Gates and flip flops and make us in designing different data processing circuits, registers and counters and compare the types.
- Develop simple HDL programs

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Charles H Roth and Larry L Kinney, Analog and Digital Electronics, Cengage Learning, 2019 Reference Books:

- 1. Anil K Maini, Varsha Agarwal, Electronic Devices and Circuits, Wiley, 2012.
- 2. Donald P Leach, Albert Paul Malvino & Goutam Saha, Digital Principles and Applications, 8th Edition, Tata McGraw Hill, 2015.
- 3. M. Morris Mani, Digital Design, 4th Edition, Pearson Prentice Hall, 2008.
- 4. David A. Bell, Electronic Devices and Circuits, 5th Edition, Oxford University Press, 2008

Dept. Of Information, Politings & Engineering Alva's Institute of Engg & Technology Mijar, MOODBIDRI - 574 225