COMPUTER VISION AND ROBOTICS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 - 2018) SEMESTER – VII					
Subject Code	17CS752	IA Marks		40	
Number of Lecture Hours/Week	3	Exam Marks		60	
Total Number of Lecture Hours	40	Exam Hours	03	}	
CREDITS - 03					
Module – 1				Teaching Hours	
CAMERAS: Pinhole Cameras, Ra Space, Light Surfaces, Important S Shading: Qualitative Radiometry, S Models, Application: Photometric Models, Color: The Physics of Color Color, A Model for Image Color, Surface	Special Cases, So Sources and Their Stereo, Interreflector, Human Color F	Durces, Shadows, A Effects, Local Shadetions: Global Shade Perception, Represent	And ling ling	8 Hours	
Module – 2					
Linear Filters: Linear Filters and Conspatial Frequency and Fourier Trans Templates, Edge Detection: Noise, Texture: Representing Texture, A Pyramids, Application: Synthesis by Texture.	sforms, Sampling Estimating Derivanalysis (and Syn	and Aliasing, Filters atives, Detecting Ed thesis) Using Orier	ges,	8 Hours	
Module – 3					
The Geometry of Multiple Views: Human Stereposis, Binocular Fusion Clustering: What Is Segmentation? Applications: Shot Boundary Detect Segmentation by Clustering Pixels, Segmentation	 Using More Can Human Vision: tion and Backgro 	neras, Segmentation Grouping and Gets und Subtraction, In-	talt,	8 Hours	
Module – 4					
Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness, Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice, Tracking With Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples.				8 Hours	
Module – 5					
Geometric Camera Models: Elem Camera Parameters and the Perspect Projection Equations, Geometric Parameter Estimation, A Linear App Distortion into Account, Analytical Robot Localization, Model- Based Hypotheses by Pose Consistency, Obtaining Hypotheses Using Invaria In Medical Imaging Systems, Curved	tive Projection, After Camera Calil roach to Camera C Photogrammetry, d Vision: Initial Obtaining Hypothemants, Verification,	fine Cameras and Albration: Least-Squalibration, Taking Ra An Application: Mo Assumptions, Obtains by pose Cluste Application: Registra	ffine nares adial obile ning ring,		
Course outcomes: The students shou	ild be able to:				
 Implement fundamental imag Perform shape analysis 	e processing techni	ques required for con	npute	r vision	

- Implement boundary tracking techniques
- Apply chain codes and other region descriptors
- Apply Hough Transform for line, circle, and ellipse detections.
- Apply 3D vision techniques.
- Implement motion related techniques.
- Develop applications using computer vision techniques.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009.

Reference Books:

2. E. R. Davies: Computer and Machine Vision – Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013.

Dept. Of Information Science & Engineering Alva's Institute of Engg. 3. Technology Mijar, MOODBIDRI - 574 225