MACHINE LEARNING

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 - 2018)

SEMESTER – VII

Subject Code	17CS73	40	
Number of Lecture Hours/Week	03	Exam Marks	60
Total Number of Lecture Hours	50	Exam Hours	03
	CREDITS	_ 04	

CREDITS - 04						
Module – 1	Teaching					
	Hours					
Introduction: Well posed learning problems, Designing a Learning system,	10 Hours					
Perspective and Issues in Machine Learning.						
Concept Learning: Concept learning task, Concept learning as search, Find-S						
algorithm, Version space, Candidate Elimination algorithm, Inductive Bias.						
Text Book1, Sections: 1.1 – 1.3, 2.1-2.5, 2.7						

Module - 2

Decision Tree Learning: Decision tree representation, Appropriate problems for	10 Hours
decision tree learning, Basic decision tree learning algorithm, hypothesis space search	
in decision tree learning, Inductive bias in decision tree learning, Issues in decision	
tree learning.	
Tord Dealet Code and 2.1.2.5	

Text Book1, Sections: 3.1-3.7

Module - 3

	Artificial	Neural	Networks:	Introduction,	Neural	Network	representation,	08 Hours
Appropriate problems, Perceptrons, Backpropagation algorithm.								
	Toyt book	1 Castin	no. 11 16		_			

Text book 1, Sections: 4.1 - 4.6

Module - 4

	Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and concept	10 Hours		
	learning, ML and LS error hypothesis, ML for predicting probabilities, MDL			
principle, Naive Bayes classifier, Bayesian belief networks, EM algorithm				
	Text book 1. Sections: 61 – 66 69 611 612			

Module - 5

Evaluating Hypothesis: Motivation, Estimating hypothesis accuracy, Basics of	12 Hours
sampling theorem, General approach for deriving confidence intervals, Difference in	
error of two hypothesis, Comparing learning algorithms.	
T. (D.) T.	

Instance Based Learning: Introduction, k-nearest neighbor learning, locally weighted regression, radial basis function, cased-based reasoning,

Reinforcement Learning: Introduction, Learning Task, Q Learning

Text book 1, Sections: 5.1-5.6, 8.1-8.5, 13.1-13.3

Course Outcomes: After studying this course, students will be able to

- Recall the problems for machine learning. And select the either supervised, unsupersvised or reinforcement learning.
- Understand theory of probability and statistics related to machine learning
- Illustrate concept learning, ANN, Bayes classifier, k nearest neighbor, Q,

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Text Books:

- Object-oriented analysis, design and implementation, brahma dathan, sarnath rammath, universities press,2013
- 2. Design patterns, erich gamma, Richard helan, Ralph johman, john vlissides ,PEARSON Publication,2013.

Reference Books:

- 1. Frank Bachmann, RegineMeunier, Hans Rohnert "Pattern Oriented Software Architecture" Volume 1, 1996.
- 2. William J Brown et al., "Anti-Patterns: Refactoring Software, Architectures and Projects in Crisis", John Wiley, 1998.

Dept. Of Information Science & Engineering Alva's Institute of Engs. & Technology Mijar, MOODBIDRI - 574 225 Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.

Reference Books:

- 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics.
- 2. Ethem Alpaydın, Introduction to machine learning, second edition, MIT press.

Dept. Of information Science & Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225