CL	OUD COMPU	TING		
[As per Choice Ba	sed Credit Sys	tem (CBCS) scheme]		
(Effective fron	n the academic	year 2017 -2018)		
•	SEMESTER -	- V		
Subject Code	17CS565	IA Marks	40	Wife of
Number of Lecture Hours/Week	3	Exam Marks	60	
Total Number of Lecture Hours	40	Exam Hours	03	
Total Trainer of Beetare Trains	CREDITS -			
Module – 1				Teachin
				Hours
ntroduction ,Cloud Computing at a	Glance, The	Vision of Cloud Com	puting,	8 Hours
Defining a Cloud, A Closer Loc				
Characteristics and Benefits, Chal	llenges Ahead	, Historical Develop	ments,	
Distributed Systems, Virtualization,	Web 2.0, S	Service-Oriented Com	puting,	
Utility-Oriented Computing, Bu	ilding Cloud	Computing Environ	ments,	
Application Development, Infrastruc	cture and Syste	m Development, Com		
Platforms and Technologies, Am	azon Web S	Services (AWS),	Google	
AppEngine, Microsoft Azure, H	ladoop, Force	.com and Salesford	e.com,	
Manjrasoft Aneka		Michaelia I Davida		
Virtualization, Introduction, Chara	acteristics of	Virtualized, Enviro	nments	
Taxonomy of Virtualization Technic	lues, Execution	virtualization, Other	Types	
of Virtualization, Virtualization and	id Cloud Con	nputing, Pros and C	ons of	
Virtualization, Technology				
Module – 2	T . 1	Claud Defenence	Madal	8 Hour
Cloud Computing Architecture,	introduction,	Cloud Reference	Parvice	o Dour
Architecture, Infrastructure / Hardy	vare as a ser	ouds Private Clouds	Hybrid	
Software as a Service, Types of Clo	mins of the Ch	ouds, Filvaic Clouds,	Cloud	
Clouds, Community Clouds, Econor Definition, Cloud Interoperability an	d Standards Sc	valability and Fault To	lerance	
Definition, Cloud interoperating an	ntional Aspects	calability and Fault To	Teranice	
Security, Trust, and Privacy Organiza Aneka: Cloud Application Platforn	n Framework	Overview Anatomy	of the	}
Aneka: Cloud Application Flations Aneka Container, From the Groun	d Un. Platfor	n Abstraction Laver.	Fabric	
Services, foundation Services, App	lication Service	es Building Aneka	Clouds.	
infrastructure Organization, Logical	Organization	Private Cloud Depl	ovment	,
Mode, Public Cloud Deployment Mo	de Hybrid Clo	oud Deployment Mode	, Cloud	
Programming and Management, Ane	ka SDK. Mana	gement Tools		
Module – 3	,			(
Concurrent Computing: Thread Prog	ramming. Intro	ducing Parallelism for	Single	8 Hour
Machine Computation, Programming	ng Application	s with Threads, Wh	at is a	
Thread APIs Techniques	s for Parallel	Computation with 1	hreads,	
Multithreading with Aneka, Introduc	ing the Thread	Programming Model	Aneka	
Thread vs. Common Threads, Progr	ramming Appl	ications with Aneka T	hreads,	
	Iodel. Domai	n Decomposition:	Matrix	
Aneka Threads Application M Multiplication, Functional Decompos	sition: Sine. Co	sine, and Tangent.		
T'-1 Throughout Computing	Task Prograt	nming, Task Con	nputing,	
High-Throughput Computing. Characterizing a Task, Computing C	ategories Fran			
Characterizing a Task, Computing C Fask-based Application Models,	Embarrassit	ngly Parallel Appli	cations.	
Parameter Sweep Applications, MP	I Applications	Workflow Application	ns with	5
Parameter Sweep Applications, Wirk Task Dependencies, Aneka Task	1 1 pp 11 cations,		•	

Model, Developing Applications with the Task Model, Developing Parameter Sweep Application, Managing Workflows.	
Module – 4	
Data Intensive Computing: Map-Reduce Programming, What is Data-Intensive Computing?, Characterizing Data-Intensive Computations, Challenges Ahead, Historical Perspective, Technologies for Data-Intensive Computing, Storage Systems, Programming Platforms, Aneka MapReduce Programming, Introducing the MapReduce Programming Model, Example Application Module – 5	8 Hours
Cloud Platforms in Industry, Amazon Web Services, Compute Services, Storage Services, Communication Services, Additional Services, Google AppEngine, Architecture and Core Concepts, Application Life-Cycle, Cost Model, Observations, Microsoft Azure, Azure Core Concepts, SQL Azure, Windows Azure Platform Appliance.	8 Hours
Cloud Applications Scientific Applications, Healthcare: ECG Analysis in the Cloud, , Social Networking, Media Applications, Multiplayer Online Gaming. Course outcomes: The students should be able to:	
 Explain the concepts and terminologies of cloud computing Demonstrate cloud frameworks and technologies 	
Define data intensive computing Demonstrate cloud applications	
Question paper pattern:	
The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.	ch
Text Books: 1. Rajkumar Buyya, Christian Vecchiola, and Thamarai Selvi M Cloud. Computing McGraw Hill Education	Mastering

NIL

Dept. Of Information Science & Engineering Alva's Institute of Energ. & Technology Mijar, MOODBIDRI - 574 225