AUTOMATA THEORY AND COMPUTABILITY [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 - 2018)					
Subject Code	SEMESTER		1.40		
	17CS54	IA Marks	40		
Number of Lecture Hours/Week	4	Exam Marks	60		
Total Number of Lecture Hours	50	Exam Hours	03		
Module – 1	CREDITS -	04		Teaching Hours	
Why study the Theory of Comp Languages. A Language Hierarch (FSM): Deterministic FSM, Nondeterministic FSMs, From FSM FSMs, Minimizing FSMs, Canonic Transducers, Bidirectional Transduc Textbook 1: Ch 1,2, 3,4, 5.1 to 5.10 Module – 2	ny, Computation Regular lange Ms to Operation all form of Regers.	on, Finite State Mac guages, Designing nal Systems, Simulato gular languages, Finite	FSM, ors for State	10 Hours	
Regular Expressions (RE): what is REs, Manipulating and Simplifyin Regular Grammars and Regular lan regular Languages: How many RLs, properties of RLs, to show some languages: Ch 6, 7, 8: 6.1 to 6.4, 7 Module – 3	ng REs. Regular guages. Regular To show that a guages are not Figure 1, 7.2, 8.1 to 8	ular Grammars: Defin ir Languages (RL) and language is regular, C Ls.	nition, Non- losure	10 Hours	
Context-Free Grammars(CFG): Introduction to Rewrite Systems and Grammars, CFGs and languages, designing CFGs, simplifying CFGs, proving that a Grammar is correct, Derivation and Parse trees, Ambiguity, Normal Forms. Pushdown Automata (PDA): Definition of non-deterministic PDA, Deterministic and Non-deterministic PDAs, Non-determinism and Halting, alternative equivalent definitions of a PDA, alternatives that are not equivalent to PDA. Textbook 1: Ch 11, 12: 11.1 to 11.8, 12.1, 12.2, 12,4, 12.5, 12.6 Module – 4				10 Hours	
Context-Free and Non-Context-Free Languages(CFL) fit, Showing a lang CFL, Important closure properties of Decision Procedures for CFLs: De Turing Machine: Turing machine moby TM, design of TM, Techniques for Textbook 1: Ch 13: 13.1 to 13.5, Comodule – 5	guage is contex CFLs, Determined cidable question odel, Representation of TM construct	t-free, Pumping theored nistic CFLs. Algorithm ns, Un-decidable ques tion, Language acceptation.	m for s and tions.	10 Hours	

Textbook 1: Ch 13: 13.1 to 13.5, Ch 14: 14.1, 14.2, Textbook 2: Ch 9.1 to 9.6

Module – 5

Variants of Turing Machines (TM), The model of Linear Bounded automata: Decidability: Definition of an algorithm, decidability, decidable languages, Undecidable languages, halting problem of TM, Post correspondence problem. Complexity: Growth rate of functions, the classes of P and NP, Quantum Computation: quantum computers, Church-Turing thesis.

Textbook 2: Ch 9.7 to 9.8, 10.1 to 10.7, 12.1, 12.2, 12.8, 12.8.1, 12.8.2

Course outcomes: The students should be able to:

• Tell the core concepts in automata theory and Theory of Computation

- Explain how to translate between different models of Computation (e.g., Deterministic and Non-deterministic and Software models).
- Interpret Grammars and Automata (recognizers) for different language classes and become knowledgeable about restricted models of Computation (Regular, Context Free) and their relative powers.
- Develop skills in formal reasoning and reduction of a problem to a formal model, with an emphasis on semantic precision and conciseness.
- Classify a problem with respect to different models of Computation.

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- Elaine Rich, Automata, Computability and Complexity, 1st Edition, Pearson Education, 2012/2013
- 2. KLP Mishra, N Chandrasekaran, 3rd Edition, Theory of Computer Science, PhI, 2012.

Reference Books:

- John E Hopcroft, Rajeev Motwani, Jeffery D Ullman, Introduction to AutomataTheory, Languages, and Computation, 3rd Edition, Pearson Education, 2013
- 2. Michael Sipser: Introduction to the Theory of Computation, 3rd edition, Cengage learning, 2013
- 3. John C Martin, Introduction to Languages and The Theory of Computation, 3rd Edition, Tata McGraw –Hill Publishing Company Limited, 2013
- 4. Peter Linz, "An Introduction to Formal Languages and Automata", 3rd Edition, Narosa Publishers, 1998
- 5. Basavaraj S. Anami, Karibasappa K G, Formal Languages and Automata theory, Wiley India, 2012
- 6. C K Nagpal, Formal Languages and Automata Theory, Oxford University press, 2012.

H.O.D.

Dept. Of Information Science & Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225