SOFTWARE ENGINEERING [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 -2018)

SEMESTER - IV

Subject Code	17CS45	IA Marks	T
Number of Lecture Hours/Week	04		40
Total Number of Lecture Hours	50	Exam Marks	60
	CREDITS -	Exam Hours	03
Module 1	CKEDI15-	04	
			Teaching
Introduction: Software Crisis Nood	I fan C-A		Hours
Introduction: Software Crisis, Need Development, Software Engineering E	this Conware En	gineering. Professional So	ftware 12 Hour
Software Processes: Models: Water	rfall Madal (C	S.	
Software Processes: Models: Water 2.1.2) and Spiral Model (Sec 2.1.3). Pr	riali Model (Sec	2.1.1), Incremental Mode	1 (Sec
Requirements Elicitation and Anal	equirements Engi	neering Processes (Cha	p 4).
Requirements Elicitation and Anal	ysis (Sec 4.5).	Functional and non-func	ctional
requirements (Sec 4.1). The software Specification (Sec 4.3). Pagairantee	Requirements Do	cument (Sec 4.2). Require	ments
Specification (Sec 4.3). Requirements (Sec 4.7).	s validation (Sec	4.6). Requirements Manage	ement
Module 2			
	3 20 2		
System Models: Context models (Sec 5.3) Rehavioral and 1.1	Sec 5.1). Interaction	on models (Sec 5.2). Stru	ctural 11 Hours
models (Sec 5.3). Behavioral models (Sec 5.3). Behavioral models (Sec 5.3).	Sec 5.4). Model-dr	iven engineering (Sec 5.5).	
Design and Implementation: Introdu	iction to RUP (See	c 2.4), Design Principles (Chap
17). Object-oriented design using the	he UML (Sec 7.	1). Design patterns (Sec	7.2).
Implementation issues (Sec 7.3). Open Module 3	source developme	nt (Sec 7.4).	
C CAN DATE OF STREET STREET			
Software Testing: Development testi	ng (Sec 8.1), Test	dediven development (Sec	8.2), 9 Hours
Release testing (Sec 8.3), User testing 231,444,695).	(Sec 8.4). Test A	utomation (Page no 42, 70	,212,
Software Evolution: Evolution proces	sses (Sec 9.1). Pro	ogram evolution dynamics	(Sec
9.2). Software maintenance (Sec 9.3). I Module 4	egacy system man	agement (Sec 9.4).	1
	(0. 0.0.1)		
Project Planning: Software pricing ((Sec 23.1). Plan-d	riven development (Sec 2	23.2). 10 Hours
Project scheduling (Sec 23.3): Estimati	ion techniques (Se	c 23.5). Quality managen	nent:
Software quality (Sec 24.1). Reviews a	and inspections (Se	cc 24.3). Software measure	ment
and metrics (Sec 24.4). Software standa	rds (Sec 24.2)	255 Me 40	
Module 5			
Agile Software Development: Coping	g with Change (S	ec 2.3), The Agile Manif	esto: 8 Hours
Values and Principles. Agile methods:	SCRUM (Ref "Th	e SCRUM Primer Ver	מיים פ
and Extreme Programming (Sec 3.3). Pl	lan-driven and agil	e development (Sec 3.2)	Agile
project management (Sec 3.4), Scaling	agile methods (Sec	: 3.5):	
ourse Outcomes: After studying this co	ourse, students wil	l be able to:	
 Design a software system, comp 	onent, or process t	o meet desired needs within	n realistic

- Design a software system, component, or process to meet desired needs within realistic constraints.
- Assess professional and ethical responsibility
- Function on multi-disciplinary teams
- Make use of techniques, skills, and modern engineering tools necessary for engineering

practice

Comprehend software systems or parts of software systems.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012. (Listed topics only from Chapters 1,2,3,4, 5, 7, 8, 9, 23, and 24)

2. The SCRUM Primer, Ver 2.0, http://www.goodagile.com/scrumprimer/scrumprimer20.pdf

Reference Books:

- Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGraw Hill.
- 2. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India

Web Reference for eBooks on Agile:

- 1. http://agilemanifesto.org/
- 2. http://www.jamesshore.com/Agile-Book/

H.O.D.

Dept. Of Information Science & Engineering Awa's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225