[As per Cl	hoice Based Cred	ATHEMATICS-III it System (CBCS) sch			
(Effect	ive from the acad SEMEST	lemic year 2017 -2018	3)		
Subject Code	17MAT31	IA Marks	40		
Number of Lecture Hours/Week					
	04	Exam Marks	60	60	
Total Number of Lecture Hours	50	Exam Hours	03	03	
·	CREDIT	S-04			
Module -1				Teaching Hours	
Fourier Series: Periodic functions, Dir period 2π and with arbitrary period 2c. Series, practical harmonic analysis-Illust	Fourier series of e	ven and odd functions	riodic functions with s. Half range Fourier	10Hours	
Module -2		w line in			
Fourier Transforms: Infinite Fourier transform. Z-transform: Difference equations, bas Damping rule, Shifting rule, Initial valuations of z-transform. Applications of z-transform.	ic definition, z-tra	ansform-definition, State theorems (without p	andard z-transforms	10 Hours	
Module – 3					
Statistical Methods: Review of measurements of correlation-proproof) – problems Curve Fitting: Curve fitting by the methor $+b$, $y = ax^2 + bx + c$ and $y = ae^{bx}$. Numerical Methods: Numerical solution Method and Newton-Raphson method.	oblems. Regression of least square	n analysis- lines of s- fitting of the curves	regression (without of the form, $y = ax$	10 Hours	
Module-4					
Finite differences: Forward and ba interpolation formulae. Divided different interpolation formula and inverse interpolation. Numerical integration: Simpson's (1/2) Problems.	nces- Newton's	divided difference for	ormula. Lagrange's	10 Hours	
Module-5		4			
Vector integration: Line integrals-definition Green's theorem in a plane, Stokes and Gralculus of Variations: Variation of functions, Geodesics, hanging chain, problem	auss-divergence the ction and Function	earem(without proof)	and11	10 Hours	
Course outcomes:					

After Studying this course, students will be able to

- Know the use of periodic signals and Fourier series to analyze circuits and system communications.
- Explain the general linear system theory for continuous-time signals and digital signal processing using the Fourier Transform and z-transform.
- Employ appropriate numerical methods to solve algebraic and transcendental equations.
- Apply Green's Theorem, Divergence Theorem and Stokes' theorem in various applications in the field of electro-magnetic and gravitational fields and fluid flow problems.
- Determine the extremals of functionals and solve the simple problems of the calculus of variations.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 42nd edition, 2013.
- 2. B.V. Ramana "Higher Engineering Mathematics" Tata McGraw-Hill, 2006.

Reference Books:

- 1. N. P. Bali and Manish Goyal, "A text book of Engineering mathematics", Laxmi publications, latest edition.
- 2. Kreyszig, "Advanced Engineering Mathematics" 9th edition, Wiley.
- 3. H. K Dass and Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand, 1st ed.

80 hul

Dept. Of Information Science & Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225