[As per Choice]	Based Credit Sy	ND SIMULATION vstem (CBCS) scheme	ı
	om the academi	c year 2016 -2017)	•
Subject Code	SEMESTER –	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	
Total Number of Lecture Hours	40	Exam Marks Exam Hours	80
Total Number of Lecture Hours	CREDITS -		03
Course objectives: This course will			
Explain the basic system con			
 Discuss techniques to model 	and to simulate	various system;	
Analyze a system and to make	e use of the info	various systems,	nerformance
Module – 1	e use of the info	imation to improve the	Teachin
_			Hours
Introduction: When simulation i	s the appropria	te tool and when it	
appropriate, Advantages and disadva	antages of Simu	lation: Areas of applic	eation
Systems and system environment;	Components of	of a system. Discrete	ation,
continuous systems, Model of a syste	m: Types of Mo	dels Discrete-Event S	vetem
Simulation Simulation examples:	Simulation of	quening systems Ge	neral
Principles, Simulation Software:C	oncents in Disc	rete-Event Simulation	The
Event-Scheduling / Time-Advance	Algorithm Man	ual simulation Using	Event
Scheduling	ingorithmi, iviani	dat simulation Osing	Event
Module – 2			
Statistical Models in Simulation :R	eview of termin	ology and concents I	seful 10 Hour
statistical models,Discrete distrib	utions Continu	nous distributions De	isciul 10 Hour
process, Empirical distributions.	unons. Comm	uous distributions, Po	isson
	A. N. J.	0	_ 1
Queuing Models: Characteristics of o	jueumg systems,	Queuing notation, Long	g-run
measures of performance of queuing	systems, Long-ru	in measures of perform	ance
of queuing systems cont,Steady-sta	ate benavior of	M/G/I queue, Networl	cs of
ueues, Module – 3			
Random-NumberGeneration:Proper	ties of random	numbers; Generation	n of 10 Hours
seudo-random numbers, Techniques	for generating	random numbers, Tests	for
Random Numbers, Random-Variate	Generation: ,Ir	iverse transform techn	ique
cceptance-Rejection technique.	F4		
fodule – 4	71	W 100	
nput Modeling: Data Collection;	Identifying the	e distribution with o	data, 10 Hours
arameter estimation, Goodness of F	it Tests, Fitting	a non-stationary Pois	sson
rocess, Selecting input models without	ıt data, Multivar	riate and Time-Series in	aput
odels.			
stimation of Absolute Performance	e: Types of sin	mulations with respec	t to
atput analysis ,Stochastic nature of o	utput data, Mea	sures of performance	and
eir estimation, Contd		or performance	and
odule – 5			
odule – 5	stimation Output	t analysis for tamping	ing 10 IV
odule - 5 easures of performance and their ea	stimation,Output	t analysis for terminal	ting 10 Hours
odule – 5 easures of performance and their endulations Continued,Output analysis	for steady-state	simulations.	
odule - 5 easures of performance and their ea	for steady-state	simulations. ization: Model buildi	ing

simulation models, Calibration and validation of models, Optimization via Simulation.

Course outcomes: The students should be able to:

- Explain the system concept and apply functional modeling method to model the activities of a static system
- Describe the behavior of a dynamic system and create an analogous model for a dynamic system;
- Simulate the operation of a dynamic system and make improvement according to the simulation results.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

 Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol: Discrete-Event System Simulation, 5 th Edition, Pearson Education, 2010.

Reference Books:

- Lawrence M. Leemis, Stephen K. Park: Discrete Event Simulation: A First Course, Pearson Education, 2006.
- 2. Averill M. Law: Simulation Modeling and Analysis, 4th Edition, Tata McGraw-Hill, 2007

Stehel H.O.D.

Dept. Of Information Science & Engineering Alva's Institute of Engg. 8. 10,099 Mijar, MOODBIDRI - 574 425