Total Number of Lecture Hours	analysis, and im neering application r architectures, par	Exam Marks Exam Hours plementation, of high is.	0 0 3
Total Number of Lecture Hours Course objectives: This course will en Introduce students the design, computational science and engir Illustrate on advanced computer and performance-oriented comp	Analysis, and impeering application architectures, par	Exam Hours (
Course objectives: This course will end Introduce students the design, computational science and engine Illustrate on advanced computer and performance-oriented comp	CREDITS – 03 able students to analysis, and im neering application r architectures, par	Exam Hours (
Introduce students the design, computational science and engine Illustrate on advanced computer and performance-oriented comp	able students to analysis, and im neering application r architectures, par	plementation, of high	
Introduce students the design, computational science and engine Illustrate on advanced computer and performance-oriented comp	able students to analysis, and im neering application r architectures, par	ıs.	
 Introduce students the design, computational science and engir Illustrate on advanced computer and performance-oriented comp 	analysis, and im neering application r architectures, par	ıs.	
Module – 1	uillig.	and algorithms, paran	
			Teaching Hours
Introduction: Computational Scient Science and Engineering Applications; of Computational Complexity, Performance of Granularity and Partitioning, Localismethods for parallel programming, Resocale, multi-discipline applications) Module – 2	characteristics and formance: metric ty: temporal/spati	d requirements, Review s and measurements al/stream/kernel Basio	
High-End Computer Systems : Men	nomi Ilianushi	M. K. D	10 Hours
Homogeneous and Heterogeneous, Sha Vector Computers, Distributed Men Petascale Systems, Application Acceler computers: Stream, multithreaded, and p	red-memory Symmory Computers, rators / Reconfigur	metric Multiprocessors Supercomputers and	
Parallel Algorithms: Parallel mode Techniques: Balanced Trees, Pointer Jun Regular Algorithms: Matrix operations a Lists, Trees, Graphs, Randomizati Generators, Sorting, Monte Carlo techni	mping, Divide and and Linear Algebra ion: Parallel Pse	Conquer, Partitioning,	
Module – 4			
Parallel Programming: Revealing of Functional Parallelism, Task Scheduling Primitives (collective operations), SPMI (O and File Systems, Parallel Matlabs Partitioning Global Address Space (PG Arrays)	ing, Synchronizat D Programming (th s (Parallel Matlab.	ion Methods, Parallel treads, OpenMP, MPI), Star-P, Matlah MPI)	
Module – 5			
ottlenecks, Restructuring applications for heterogeneous resource ameworks	or deep memory hees, using existing	ierarchies Partitioning	10 Hours
Course outcomes: The students should be			-
 Illustrate the key factors affecting Make mapping of applications to 	g performance of (CSE applications, and	J

Apply hardware/software co-design for achieving performance on real-world applications

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each

Text Books:

1. Introduction to Parallel Computing, AnanthGrama, Anshul Gupta, George Karypis, and Vipin Kumar, 2nd edition, Addison-Welsey, 2003.

2. Petascale Computing: Algorithms and Applications, David A. Bader (Ed.), Chapman & Hall/CRC Computational Science Series, 2007

Reference Books:

1. Grama, A. Gupta, G. Karypis, V. Kumar, An Introduction to Parallel Computing, Design and Analysis of Algorithms: 2/e, Addison-Wesley, 2003.

2. G.E. Karniadakis, R.M. Kirby II, Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms and their Implementation, Cambridge University Press, 2003.

3. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, 2/E, Prentice Hall, 2005.

4. M.J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2004.

5. G.S. Almasi and A. Gottlieb, Highly Parallel Computing, 2/E, Addison-Wesley, 1994.

Jaswinder Pal Singh,"Parallel Computer Architecture: A Culler hardware/Software Approach", Morgan Kaufmann, 1999.

7. Kai Hwang, "Scalable Parallel Computing", McGraw Hill 1998.

Dept. Of Information Science & Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225