| Total Number of Lecture Hours | analysis, and im
neering application
r architectures, par | Exam Marks Exam Hours plementation, of high is. | 0
0
3 | |--|---|--|-------------------| | Total Number of Lecture Hours Course objectives: This course will en Introduce students the design, computational science and engir Illustrate on advanced computer and performance-oriented comp | Analysis, and impeering application architectures, par | Exam Hours (| | | Course objectives: This course will end Introduce students the design, computational science and engine Illustrate on advanced computer and performance-oriented comp | CREDITS – 03 able students to analysis, and im neering application r architectures, par | Exam Hours (| | | Introduce students the design, computational science and engine Illustrate on advanced computer and performance-oriented comp | able students to
analysis, and im
neering application
r architectures, par | plementation, of high | | | Introduce students the design, computational science and engine Illustrate on advanced computer and performance-oriented comp | able students to
analysis, and im
neering application
r architectures, par | ıs. | | | Introduce students the design,
computational science and engir Illustrate on advanced computer
and performance-oriented comp | analysis, and im
neering application
r architectures, par | ıs. | | | Module – 1 | uillig. | and algorithms, paran | | | | | | Teaching
Hours | | Introduction: Computational Scient Science and Engineering Applications; of Computational Complexity, Performance of Granularity and Partitioning, Localismethods for parallel programming, Resocale, multi-discipline applications) Module – 2 | characteristics and formance: metric ty: temporal/spati | d requirements, Review
s and measurements
al/stream/kernel Basio | | | High-End Computer Systems : Men | nomi Ilianushi | M. K. D | 10 Hours | | Homogeneous and Heterogeneous, Sha
Vector Computers, Distributed Men
Petascale Systems, Application Acceler
computers: Stream, multithreaded, and p | red-memory Symmory Computers, rators / Reconfigur | metric Multiprocessors Supercomputers and | | | Parallel Algorithms: Parallel mode
Techniques: Balanced Trees, Pointer Jun
Regular Algorithms: Matrix operations a
Lists, Trees, Graphs, Randomizati
Generators, Sorting, Monte Carlo techni | mping, Divide and
and Linear Algebra
ion: Parallel Pse | Conquer, Partitioning, | | | Module – 4 | | | | | Parallel Programming: Revealing of Functional Parallelism, Task Scheduling Primitives (collective operations), SPMI (O and File Systems, Parallel Matlabs Partitioning Global Address Space (PG Arrays) | ing, Synchronizat
D Programming (th
s (Parallel Matlab. | ion Methods, Parallel
treads, OpenMP, MPI),
Star-P, Matlah MPI) | | | Module – 5 | | | | | ottlenecks, Restructuring applications for heterogeneous resource ameworks | or deep memory hees, using existing | ierarchies Partitioning | 10 Hours | | Course outcomes: The students should be | | | - | | Illustrate the key factors affecting Make mapping of applications to | g performance of (| CSE applications, and | J | Apply hardware/software co-design for achieving performance on real-world applications ## Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each ## Text Books: 1. Introduction to Parallel Computing, AnanthGrama, Anshul Gupta, George Karypis, and Vipin Kumar, 2nd edition, Addison-Welsey, 2003. 2. Petascale Computing: Algorithms and Applications, David A. Bader (Ed.), Chapman & Hall/CRC Computational Science Series, 2007 ## Reference Books: 1. Grama, A. Gupta, G. Karypis, V. Kumar, An Introduction to Parallel Computing, Design and Analysis of Algorithms: 2/e, Addison-Wesley, 2003. 2. G.E. Karniadakis, R.M. Kirby II, Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms and their Implementation, Cambridge University Press, 2003. 3. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, 2/E, Prentice Hall, 2005. 4. M.J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2004. 5. G.S. Almasi and A. Gottlieb, Highly Parallel Computing, 2/E, Addison-Wesley, 1994. Jaswinder Pal Singh,"Parallel Computer Architecture: A Culler hardware/Software Approach", Morgan Kaufmann, 1999. 7. Kai Hwang, "Scalable Parallel Computing", McGraw Hill 1998. Dept. Of Information Science & Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225