OPI	ERATIONS RESI	EARCH	
[As per Choice I	Based Credit Syst	em (CBCS) scheme]	
(Effective from	om the academic	year 2016 -2017)	
Subject Code	SEMESTER - V		
Subject Code	15CS653	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
C	CREDITS - 03		
Course objectives: This course will	l enable students to		
Formulate optimization prob	lem as a linear pro	gramming problem.	
 Solve optimization problems 	using simplex me	thod.	
 Formulate and solve transport 	rtation and assign	ment problems	
 Apply game theory for decis 	ion making proble	ms.	
Module – 1			Teaching
I.A. I.A.	t .		Transa
Introduction, Linear Programm	ing: Introduction:	The origin, nature	and 8 Hours
impact of OK; Defining the pro	oblem and gather	ing data: Formulating	a facility of the state of
manicinatical model; Deriving soli	itions from the m	nodel; Testing the mod	del;
Preparing to apply the model; Imple	mentation.		w 1 7
Introduction to Linear Program	ming Problem (I	PP): Prototype exam	ole,
Assumptions of LPP, Formulation examples.	n of LPP and C	raphical method vari	ous
Module – 2			
Simplex Method – 1: The essence of	f the simular	1.000	7
method; Types of variables, Algebra	of the simplex mem	od; Setting up the simp	lex 8 Hours
in tabular form; Tie breaking in the	simplex method. F	Rig M method Two -1	lod
method.	ampiex memou, 1	ong wi memod, I wo pn	ase
Module – 3	and W		
Simplex Method – 2: Duality The	ory - The essence	of duality theory Prin	0 17
dual relationship, conversion of primal to dual problem and vice versa. The dual			nal 8 Hours
simplex memod.		- und vice versa. The u	Jai
Module – 4			
Transportation and Assignment Program Foodia Foodial College (IDEG)	roblems: The trans	sportation problem Init	ial 8 Hours
dasic reasible solution (IBFS) by	North West Com	ner Rule mothed May	
willima wethod, Vogel's Approxima	ation Method Onti	mal colution by N. 1'c	
Distribution Method (MODI). The A	Assignment probler	n. A Hungarian alasmit	
ioi ule assignment problem. Min	imization and M	aximization varieties	in
ransportation and assignment problem	ms.		-
Module – 5			
Game Theory: Game Theory: The for	ormulation of two	persons, zero sum game	es; 8 Hours
addie politi, maximin and minimax t	principle. Solving s	imple games a protest	pe
example; Games with mixed strategie	s; Graphical soluti	on procedure.	
Metaheuristics: The nature of Annealing, Genetic Algorithms.	ivietaneuristics, T	abu Search, Simulat	ed
Course outcomes: The students shou	ld bo oble to		
 Select and apply optimization Model the given problem as to 	techniques for vari	ous problems.	
Model the given problem as trApply game theory for decision	ausportation and as	ssignment problem and	solve.
rippij game meory for decisio	in support system.		

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each Text Books:

1. D.S. Hira and P.K. Gupta, Operations Research, (Revised Edition), Published by S. Chand & Company Ltd, 2014

Reference Books:

- 1. S Kalavathy, Operation Research, Vikas Publishing House Pvt Limited, 01-Aug-2002 2. S D Sharma, Operation Research, Kedar Nath Ram Nath Publishers.

Dept. Of Information Science & Engineering Aiva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225