	a nacional succession and all the property of the con-	em (CBCS) scheme] year 2016 -2017)			
Subject Code	15IS552	IA Marks	20	0	
Number of Lecture Hours/Week	03	Exam Marks	8	80	
Total Number of Lecture Hours	40	Exam Hours	0	03	
2 11	CREDITS -				
Course objectives: This course will					
Discuss essential knowledge	of network ana	lysis applicable to rea	l world da	ta, with	
examples from today's most Module 1	popular social	networks.		m 11	
Wiodule 1				Teaching	
Introduction to social network a	nalysis and De	ecrintive network e	nalveier	Hours	
introduction to new science of ne	etworks. Netwo	rks examples Graph	theory	8 Hours	
basics. Statistical network propertie	s. Degree distri	bution clustering coe	efficient.		
rrequent patterns. Network motifs.	Cliques and k-c	ores.			
Module 2			148	A CONT	
Network structure, Node central edges, network diameter and ave degree, closeness and betweenn PageRank. Algorithm HITS.	erage path lenges centrality.	th. Node centrality Eigenvector central	metrics: lity and	8 Hours	
Module 3		4 111			
Network communities and Affiliation networks: Networks communities.				8 Hours	
Graph partitioning and cut metrics	. Edge between	nness. Modularity cl	ustering.		
Affiliation network and bipartite gr	raphs. 1-mode	projections. Recomm	endation		
systems. Module 4	* A \				
	-4.1.1				
Information and influence pr	opagation on	networks and l	Network	8 Hours	
visualization: Social Diffusion. Ba	asic cascade m	odel. Influence maxir	nization.		
Most influential nodes in network Graph sampling. Low -dimensional	projections	ualization and graph	layouts.		
Module 5	projections				
Social media mining and SNA in	rool world. E	DAW IT '			
Natural language processing and	sentiment mini	D/VK and I witter a	analysis:	8 Hours	
networks: friends, connections, like	s re-tweets	ng. Properties of far	ge social		
Course Outcomes: The students sh	ould be able to				
Define notation and termino	d common and	twork science.			
Demonstrate, summarize and Explain basic principles belonger	u compare netw	orks.			
Explain basic principles beh	ind network an	alysis algorithms.			
Analyzing real world network	rk.				
Question paper pattern:					
he question paper will have TEN of	questions.				
here will be TWO questions from	each module.				
each question will have questions c	overing all the	topics under a modul	e.		
ne students will have to answer FI	VE full question	ns, selecting ONE fu	ll questio	n from	
ach module.					
ext Books: 1. David Easley and John K About a Highly Connected					

 Eric Kolaczyk, Gabor Csardi. "Statistical Analysis of Network Data with R (Use R!)". Springer, 2014.

 Stanley Wasserman and Katherine Faust. "Social Network Analysis. Methods and Applications." Cambridge University Press, 1994.

Reference Books:

1. NIL

H.O.D.

Dept. Of Information Science & Engineering Aiva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225

Niversit.