| ENGINEE | RING MATHE | EMATICS-IV | | | |--|---|---|------------|--| | [As per Choice] | Based Credit System | m (CBCS) scheme] | | | | (Effective fr | om the academic ye | ear 2016 -2017) | | | | | SEMESTER - | IV | | | | Subject Code | 15MAT41 | IA Marks | 20 | | | Number of Lecture Hours/Week | 04 | Exam Marks | 80 | | | Total Number of Lecture Hours | 50 | Exam Hours | 03 | | | | CREDITS - (| | 03 | | | Course objectives: This course will | enable students to | | | | | Formulate, solve and analyze | engineering probler | ms | | | | Apply numerical methods to | solve ordinary differ | ential equations | | | | Apply finite difference method | d to solve partial did | Forential equations | | | | Perform complex analysis. | a to solve partial di | referidat equations. | | | | Interpret use of sampling thecomes | ND? | | | | | Apply joint probability distrib | | | | | | Module 1 | oution and stochastic | process. | 198 | | | · · | | | Teaching | | | Numerical Methods: Numerical ask | · · · · · · · · · · · · · · · · · · · | | Hours | | | Numerical Methods: Numerical solu | ition of ordinary dif | ferential equations of first order | r 10 Hours | | | and first degree, Picard's method, | laylor's series met | hod, modified Euler's method | l, | | | Runge-Kutta method of fourth ord | er. Milne's and A | dams-Bashforth predictor an | d | | | corrector methods (No derivations of | formulae). Numeric | al solution of simultaneous firs | it | | | order ordinary differential equations order | , Picard's method, | Runge-Kutta method of fourt | h | | | Module 2 | | | 94 | | | | | | | | | Numerical Methods: Numerical solu | tion of second order | ordinary differential equations | , 10 Hours | | | ricard's method, Runge-Kutta method | and Milne's method | d Special Functions: Passal | . | | | functions- basic properties, recurrence | e relations, orthogor | nality and generating functions | | | | Legendre's functions - Legendre's po | olynomial, Rodrigue | 's formula, problems. | | | | Module 3 | | | | | | Complex Variables: Function of a co | mplex variable, limi | ts, continuity, differentiability, | . 10 Hours | | | Analytic functions-Cauchy-Riemann | equations in Cartesi | an and polar forms Properties | , | | | and construction of analytic function | | | 1 | | | Cauchy's integral formula, Residue, | is. Complex line in | tegrals-Cauchy's theorem and | 1 | | | | poles, Cauchy's Re | itegrals-Cauchy's theorem and
sidue theorem with proof and | l
l | | | problems. Transformations: (| poles, Cauchy's Re
Conformal transfo | sidue theorem with proof and | 1 | | | problems. Transformations: (transformations: $w = z^2, w = e^z, w = e^z$ | poles, Cauchy's Re
Conformal transfo | sidue theorem with proof and | 1 | | | problems. Transformations: (transformations: $w = z^2, w = e^z, w = M$ Module 4 | poles, Cauchy's Re
Conformal transformal $z + (a^2/z)$ and bili | sidue theorem with proof and
ormations, discussion of
near transformations. | f | | | problems. Transformations: C
transformations: $w = z^2$, $w = e^z$, $w = M$
Module 4
Probability Distributions: Random | poles, Cauchy's Re
Conformal transformal $z + (a^2/z)$ and bility variables (discrete | ormations, discussion of near transformations. | I IO House | | | problems. Transformations: C
transformations: $w = z^2$, $w = e^z$, $w =$
Module 4
Probability Distributions: Random
functions. Poisson distributions, geom | poles, Cauchy's Re
Conformal transformal $z + (a^2/z)$ and biling variables (discrete etric distribution, un | sidue theorem with proof and primations, discussion of near transformations. and continuous), probability ifform distribution, exponential | 10 Hours | | | problems. Transformations: C
transformations: $w = z^2$, $w = e^z$, $w =$
Module 4
Probability Distributions: Random
functions. Poisson distributions, geom | poles, Cauchy's Re
Conformal transformal $z + (a^2/z)$ and biling variables (discrete etric distribution, un | sidue theorem with proof and primations, discussion of near transformations. and continuous), probability ifform distribution, exponential | 10 Hours | | | problems. Transformations: Caransformations: $w = z^2, w = e^z, w = M$ Module 4 Probability Distributions: Random functions. Poisson distributions, geometric problems. And normal distributions, Problems. | poles, Cauchy's Re
Conformal transformal transformal $z + (a^2/z)$ and biling variables (discrete etric distribution, un Joint probability of | sidue theorem with proof and primations, discussion of near transformations. and continuous), probability different distribution, exponential distribution; Joint Probability | 10 Hours | | | problems. Transformations: Contractions: We have z^2 , $w = e^z$, $w = \frac{1}{2}$ Module 4 Probability Distributions: Random functions. Poisson distributions, geometric normal distributions, Problems. Addistribution for two variables, expectations. | poles, Cauchy's Re
Conformal transformal transformal $z + (a^2/z)$ and biling variables (discrete etric distribution, un Joint probability of | sidue theorem with proof and primations, discussion of near transformations. and continuous), probability different distribution, exponential distribution; Joint Probability | 10 Hours | | | problems. Transformations: Contractions: We transformations: $w = z^2$, $w = e^z$, $w = \frac{Module 4}{Probability Distributions: Random functions. Poisson distributions, geometric distribution for two variables, expectations. Module 5$ | poles, Cauchy's Reconformal transformal transformal transformal $z + (a^2/z)$ and bilinary variables (discrete etric distribution, under the probability of the conformal confo | sidue theorem with proof and primations, discussion of near transformations. and continuous), probability iform distribution, exponential distribution: Joint Probability elation coefficient. | 10 Hours | | | problems. Transformations: C
transformations: $w = z^2$, $w = e^z$, $w = 2$
Module 4
Probability Distributions: Random
functions. Poisson distributions, geometricand normal distributions, Problems. A
distribution for two variables, expectations. Sampling Theory: Sampling, Sampling | poles, Cauchy's Reconformal transformal transformal transformal $z + (a^2/z)$ and bilinary variables (discrete etric distribution, under the probability of the conformal distributions, state of the probability of the conformal distributions, state of the probability prob | and continuous), probability distribution: Joint Probability elation coefficient. | 10 Hours | | | problems. Transformations: Contractions: We have z^2 , $w = e^z$, $w = \frac{1}{2}$ Module 4 Probability Distributions: Random functions. Poisson distributions, geometric and normal distributions, Problems. Edistribution for two variables, expectations and proportions, Confidence of the proportions and proportions. | poles, Cauchy's Reconformal transformal transformal transformal $z + (a^2/z)$ and bilinary variables (discrete etric distribution, unformation, covariance, corresponding distributions, state limits for means. | and continuous), probability iform distribution: Joint Probability elation coefficient. | 10 Hours | | | problems. Transformations: C
transformations: $w = z^2$, $w = e^z$, $w = 2$
Module 4
Probability Distributions: Random
functions. Poisson distributions, geometricand normal distributions, Problems. A
distribution for two variables, expectations. Sampling Theory: Sampling, Sampling | poles, Cauchy's Reconformal transfer $z + (a^2/z)$ and biling variables (discrete extric distribution, under the probability of the conformal conformal distributions, state limits for means, easy of fit. Stochastic | and continuous), probability iform distribution: Joint Probability elation coefficient. and error, test of hypothesis, student's t-distribution, Chic process: Stochastic process | 10 Hours | | chains, higher transition probability. # Course Outcomes: After studying this course, students will be able to: - Use appropriate numerical methods to solve first and second order ordinary differential - Use Bessel's and Legendre's function which often arises when a problem possesses axial and spherical symmetry, such as in quantum mechanics, electromagnetic theory, hydrodynamics and heat conduction. - State and prove Cauchy's theorem and its consequences including Cauchy's integral formula. - Compute residues and apply the residue theorem to evaluate integrals. - Analyze, interpret, and evaluate scientific hypotheses and theories using rigorous statistical ## Graduate Attributes - Engineering Knowledge - Problem Analysis - Life-Long Learning - Conduct Investigations of Complex Problems # Question paper pattern: The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. #### Text Books: - 1. B.V.Ramana "Higher Engineering Mathematics" Tata McGraw-Hill, 2006. - 2. B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 42nd edition, 2013. ## Reference Books: - 1. N P Bali and Manish Goyal, "A text book of Engineering mathematics", Laxmi publications, latest edition. - 2. Kreyszig, "Advanced Engineering Mathematics" 9th edition, Wiley, 2013. - 3. H. K Dass and Er. RajnishVerma, "Higher Engineering Mathematics", S. Chand, 1st ed, Dept. Of Information Science & Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225