		F ALGORITHM:	S		
[As per Choice I (Effective fro	Based Credit Systo om the academic y SEMESTER				
Subject Code	15CS43	IA Marks		20	
Number of Lecture Hours/Week	04	Exam Marks		80	
Total Number of Lecture Hours	50	Exam Hours		03	
	CREDITS -				
Course objectives: This course will e		-di		2 - 1 - 2	
 Explain various computation 		techniques			
 Apply appropriate method to 	solve a given probl	em.			
Describe various methods of a					
Module 1	angerranni anaryors.		Alp a	Teaching	
				Hours	
Introduction: What is an Algorith	m? (T2:1.1), Ala	orithm Specification (T2:1.2).	10 Hours	
Analysis Framework (T1:2.1), Performance Analysis: Space complexity. Time			10 Hour.		
complexity (T2:1.3). Asymptotic No	tations: Big-Oh no	tation (O), Omega nota	tion (Ω) .		
Theta notation (Θ) , and Little-oh not	ation (o), Mathema	tical analysis of Non-R	ecursive	100	
and recursive Algorithms with Examp	oles (T1:2.2, 2.3, 2.	4). Important Problem	Types:	(-1 ,	
Sorting, Searching, String processi	ing, Graph Proble	ems, Combinatorial Pr	roblems.		
Fundamental Data Structures: Stac	cks, Queues, Graph	s, Trees, Sets and Dict	ionaries		
(T1:1.3,1.4)			ionarios.		
Module 2	75,000	de Miller			
Divide and Conquer: General metho	od, Binary search,	Recurrence equation for	r divide	10 Hours	
and conquer, Finding the maximum a	nd minimum (T2:3	3.1, 3.3, 3.4). Merge sor	t. Quick	To Hour.	
sort (T1:4.1, 4.2), Strassen's ma	atrix multiplication	n (T2:3.8), Advantag	es and	arright.	
Disadvantages of divide and conquer.	Decrease and Co	onquer Approach: Top	ological		
Sort. (T1:5.3)			J		
Module 3		100			
Greedy Method: General method,	Coin Change Pro	blem, Knapsack Proble	em, Job	10 Hours	
sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim's					
Algorithm, Kruskal's Algorithm (T1:	9.1, 9.2). Single so	urce shortest paths: D	Dijkstra's		
Algorithm (T1:9.3). Optimal Tree	problem: Huffma	in Trees and Codes (T1:9.4).		
Transform and Conquer Approach:	Heaps and Heap S	ort (T1:6.4).			
Module 4					
Dynamic Programming: General me	ethod with Exampl	es, Multistage Graphs	(T2:5.1,	10 Hours	
5.2). Transitive Closure: Warshall	's Algorithm, All	Pairs Shortest Paths:	Floyd's	and the same	
Algorithm, Optimal Binary Search	Trees, Knapsack	problem ((T1:8.2, 8.	3, 8.4),		
Bellman-Ford Algorithm (T2:5.4), Tra	welling Sales Perso	on problem (T2:5.9), Re	liability		
design (T2:5.8).					
Module 5					
Backtracking: General method (T2:7	.1), N-Queens prob	olem (T1:12.1), Sum of	subsets	10 Hours	
problem (T1:12.1), Graph coloring (T	2:7.4), Hamiltonia	n cycles (T2:7.5). Brai	ich and	20000 10000 10000	
Bound: Assignment Problem, Trav	velling Sales Per	son problem (T1:12.	2), 0/1	1.1	
Knapsack problem (T2:8.2, T1:12.2)): LC Branch and	Bound solution (T2.8 2). FIFO		
Branch and Bound solution (T2:8.2).			,,		

concepts, non-deterministic algorithms, P, NP, NP-Complete, and NP-Hard classes (T2:11.1).

Course Outcomes: After studying this course, students will be able to

- Describe computational solution to well known problems like searching, sorting etc.
- · Estimate the computational complexity of different algorithms.
- Devise an algorithm using appropriate design strategies for problem solving.

Graduate Attributes

- Engineering Knowledge
- Problem Analysis
- · Design/Development of Solutions
- · Conduct Investigations of Complex Problems
- Life-Long Learning

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, scleeting one full question from each module.

Text Books:

- T1. Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.

 Pearson.
- T2. Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press

Reference Books:

- Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI
- 2. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education)

SIGMM HOD

Dept. Of Information Science & Engineering Alva's Institute of Engg. & Tachnology Mijar, MOODBIDRI - 574 225