LOGIC DESIGN (Common to CSE & ISE) Subject Code: 10CS33 I.A. Marks : 25 Hours/Week: 04 Exam Hours: 03 Total Hours: 52 Exam Marks: 100 ## **PART-A** UNIT-1 7 Hours Digital Principles, Digital Logic: Definitions for Digital Signals, Digital Waveforms, Digital Logic, 7400 TTL Series, TTL Parameters The Basic Gates: NOT, OR, AND, Universal Logic Gates: NOR, NAND, Positive and Negative Logic, Introduction to HDL. UNIT - 2 6 Hours 1 Combinational Logic Circuits Sum-of-Products Method, Truth Table to Karnaugh Map, Pairs Quads, and Octets, Karnaugh Simplifications, Don't-care Conditions, Product-of-sums Method, Product-of-sums simplifications, Simplification by Quine-McClusky Method, Hazards and Hazard Covers, HDI. Implementation Models. UNIT - 3 Data-Processing Circuits: Multiplexers, Demultiplexers, 1-of-16 Decoder, Encoders, Exclusive-or Gates, Parity Generators and Checkers, Magnitude Comparator, Programmable Array Logic, Programmable Logic Arrays, HDL Implementation of Data Processing Circuits UNIT-4 7 Hours Clocks, Flip-Flops: Clock Waveforms, TTL Clock, Schmitt Trigger, Clocked D FLIP-FLOP, Edge-triggered D FLIP-FLOP, Edge-triggered JK FLIP-FLOP, FLIP-FLOP Timing, JK Master-slave FLIP-FLOP, Switch Contact Bounce Circuits, Various Representation of FLIP-FLOPs, Analysis of Sequential Circuits, HDL Implementation of FLIP-FLOP ### **PART-B** UNIT-5 6 Hours Registers: Types of Registers, Serial In - Serial Out, Serial In - Parallel out, Parallel In - Serial Out, Parallel In - Parallel Out, Universal Shift Register, Applications of Shift Registers, Register Implementation in HDL UNIT - 6 7 Hours Counters: Asynchronous Counters, Decoding Gates, Synchronous Counters, Changing the Counter Modulus, Decade Counters, Presettable Counters, Counter Design as a Synthesis problem, A Digital Clock, Counter Design using HDL UNIT – 7 7 Hours Design of Synchronous and Asynchronous Sequential Circuits: Design of Synchronous Sequential Circuit: Model Selection, State Transition Diagram, State Synthesis Table, Design Equations and Circuit Diagram, Implementation using Read Only Memory, Algorithmic State Machine, State Reduction Technique. Asynchronous Sequential Circuit: Analysis of Asynchronous Sequential Circuit, Problems with Asynchronous Sequential Circuits, Design of Asynchronous Sequential Circuit, FSM Implementation in HDL UNIT – 8 D/A Conversion and A/D Conversion: Variable, Resistor Networks, Binary Ladders, D/A Converters, D/A Accuracy and Resolution, A/D Converter-Simultaneous Conversion, A/D Converter-Counter Method, Continuous A/D Conversion, A/D Techniques, Dual-slope A/D Conversion, A/D Accuracy and Resolution ## Text Book: (1. Donald P Leach, Albert Paul Malvino & Goutam Saha: Digital Principles and Applications, 7th Edition, Tata McGraw Hill, 2010. #### Reference Books: - Stephen Brown, Zvonko Vranesic: Fundamentals of Digital Logic Design with VHDL, 2nd Edition, Tata McGraw Hill, 2005. - 2. R D Sudhaker Samuel: Illustrative Approach to Logic Design, Sanguine-Pearson, 2010. - 3. Charles H. Roth: Fundamentals of Logic Design, Jr., 5th Edition, Cengage Learning, 2004. - Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss: Digital Systems Principles and Applications, 10th Edition, Pearson Education, 2007. - 5. M Morris Mano: Digital Logic and Computer Design, 10th Edition, Pearson Education, 2008. Dept. Of Information Science & Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225