FILE STRUCTURES (Effective from the academic year 2018 -2019)				
SEMESTER – VI				
Course Code	18IS61	CIE Marks	40	
Number of Contact Hours/Week	3:2:0	SEE Marks	60	
Total Number of Contact Hours	50	Exam Hours	03	
CREDITS -4				

Course Learning Objectives: This course (18IS61) will enable students to:

- Explain the fundamentals of file structures and their management.
- Measure the performance of different file structures
- Organize different file structures in the memory.
- Demonstrate hashing and indexing techniques.

Demonstrate hashing and indexing techniques.	
Module 1	Contact
Introductions Eile Companyon The Heart of the Eile structure Design A Chart History of Eile	Hours
Introduction: File Structures: The Heart of the file structure Design, A Short History of File	10
Structure Design, A Conceptual Toolkit; Fundamental File Operations: Physical Files and	
Logical Files, Opening Files, Closing Files, Reading and Writing, Seeking, Special	
Characters, The Unix Directory Structure, Physical devices and Logical Files, File-related	
Header Files, UNIX file System Commands; Secondary Storage and System Software: Disks,	
Magnetic Tape, Disk versus Tape; CD-ROM: Introduction, Physical Organization, Strengths	
and Weaknesses; Storage as Hierarchy, A journey of a Byte, Buffer Management, Input	
/Output in UNIX.	
Fundamental File Structure Concepts, Managing Files of Records : Field and Record	
Organization, Using Classes to Manipulate Buffers, Using Inheritance for Record Buffer	
Classes, Managing Fixed Length, Fixed Field Buffers, An Object-Oriented Class for Record	
Files, Record Access, More about Record Structures, Encapsulating Record Operations in a	
Single Class, File Access and File Organization.	
RBT: L1, L2, L3	
Module 2	
Organization of Files for Performance, Indexing: Data Compression, Reclaiming Space in	10
files, Internal Sorting and Binary Searching, Keysorting; What is an Index? A Simple Index	
for Entry-Sequenced File, Using Template Classes in C++ for Object I/O, Object-Oriented	
support for Indexed, Entry-Sequenced Files of Data Objects, Indexes that are too large to	
hold in Memory, Indexing to provide access by Multiple keys, Retrieval Using Combinations	
of Secondary Keys, Improving the Secondary Index structure: Inverted Lists, Selective	
indexes, Binding.	
RBT: L1, L2, L3	
Module 3	10
Consequential Processing and the Sorting of Large Files: A Model for Implementing	10
Cosequential Processes, Application of the Model to a General Ledger Program, Extension of	
the Model to include Mutiway Merging, A Second Look at Sorting in Memory, Merging as a	
Way of Sorting Large Files on Disk.	
Multi-Level Indexing and B-Trees: The invention of B-Tree, Statement of the problem,	
Indexing with Binary Search Trees; Multi-Level Indexing, B-Trees, Example of Creating a	
B-Tree, An Object-Oriented Representation of B-Trees, B-Tree Methods; Nomenclature,	
Formal Definition of B-Tree Properties, Worst-case Search Depth, Deletion, Merging and	
Redistribution, Redistribution during insertion; B* Trees, Buffering of pages; Virtual B-	
Trees; Variable-length Records and keys.	
RBT: L1, L2, L3	

Module 4		
Indexed Sequential File Access and Prefix B + Trees: Indexed Sequential Access,	10	
Maintaining a Sequence Set, Adding a Simple Index to the Sequence Set, The Content of the		
Index: Separators Instead of Keys, The Simple Prefix B+ Tree and its maintenance, Index Set		
Block Size, Internal Structure of Index Set Blocks: A Variable-order B- Tree, Loading a		
Simple Prefix B+ Trees, B-Trees, B+ Trees and Simple Prefix B+ Trees in Perspective.		
RBT: L1, L2, L3		
Module 5		
Hashing: Introduction, A Simple Hashing Algorithm, Hashing Functions and Record	10	
Distribution, How much Extra Memory should be used?, Collision resolution by progressive		
overflow, Buckets, Making deletions, Other collision resolution techniques, Patterns of		
record access.		
Extendible Hashing: How Extendible Hashing Works, Implementation, Deletion,		
Extendible Hashing Performance, Alternative Approaches.		
RBT: L1, L2, L3		

Course Outcomes: The student will be able to:

- Choose appropriate file structure for storage representation.
- Identify a suitable sorting technique to arrange the data.
- Select suitable indexing and hashing techniques for better performance to a given problem.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Michael J. Folk, Bill Zoellick, Greg Riccardi: File Structures-An Object Oriented Approach with C++, 3rd Edition, Pearson Education, 1998. (**Chapters 1 to 12 excluding 1.4, 1.5, 5.5, 5.6, 8.6, 8.7, 8.8**)

Reference Books:

- 1. K.R. Venugopal, K.G. Srinivas, P.M. Krishnaraj: File Structures Using C++, Tata McGraw-Hill, 2008.
- 2. Scot Robert Ladd: C++ Components and Algorithms, BPB Publications, 1993.
- 3. Raghu Ramakrishan and Johannes Gehrke: Database Management Systems, 3rd Edition, McGraw Hill, 2003.