	THEODY AND	COMPLICABILITY		
		COMPUTABILITY of year 2018 -2019)		
(Effective from the academic year 2018 -2019) SEMESTER – V				
Course Code	18CS54	CIE Marks	40	
Number of Contact Hours/Week	3:0:0	SEE Marks	60	
Total Number of Contact Hours	40	Exam Hours	03	
	CREDITS	-3		
Course Learning Objectives: This course	se (18CS54) will	enable students to:		
 Introduce core concepts in Auton 	nata and Theory	of Computation		
 Identify different Formal language 	ge Classes and the	eir Relationships		
 Design Grammars and Recognize 	ers for different f	ormal languages		
 Prove or disprove theorems in au 	tomata theory us	ing their properties		
 Determine the decidability and in 	ntractability of Co	omputational problems		
Module 1				Contact
				Hours
Why study the Theory of Computation				08
Language Hierarchy, Computation, Fir				
Regular languages, Designing FSM, No.				
Systems, Simulators for FSMs, Minimiz	•	onical form of Regular lang	guages,	
Finite State Transducers, Bidirectional Tr	ransducers.			
Textbook 1: Ch 1,2, 3,4, 5.1 to 5.10				
RBT: L1, L2				
Module 2 Regular Expressions (RE): what is	a DE2 Vlaana	es theorem Applications of	f DEc	08
Manipulating and Simplifying REs. Reg				08
Regular languages. Regular Languages				
To show that a language is regular, Closure properties of RLs, to show some languages are				
not RLs.	sare properties of	TLES, to show some rangua,	ges are	
Textbook 1: Ch 6, 7, 8: 6.1 to 6.4, 7.1, 7	7.2, 8.1 to 8.4			
RBT: L1, L2, L3	,			
Module 3				
Context-Free Grammars(CFG): Introd	duction to Rewr	ite Systems and Grammars,	CFGs	08
and languages, designing CFGs, simplifying CFGs, proving that a Grammar is correct,				
Derivation and Parse trees, Ambiguity, Normal Forms. Pushdown Automata (PDA):				
Definition of non-deterministic PDA,				
determinism and Halting, alternative equi	ivalent definition	s of a PDA, alternatives that	are not	
equivalent to PDA.		- 40.5		
Textbook 1: Ch 11, 12: 11.1 to 11.8, 12.	.1, 12.2, 12,4, 12.	5, 12.6		
RBT: L1, L2, L3				
Module 4	g for CEI a. F	Vasidabla susstians III 1-	oidoble	08
Algorithms and Decision Procedure questions. Turing Machine: Turing machine		_		08
by TM, design of TM, Techniques for T				
The model of Linear Bounded automata.	111 CONSTIUCTION.	, ariants of Turing Machilles	, (11/1),	
Textbook 1: Ch 14: 14.1, 14.2, Textbook	ok 2: Ch 9.1 to 9	.8		
RBT: L1, L2, L3	2. 0 7 10 7	••		
Module 5				
Decidability: Definition of an algorith	m, decidability,	decidable languages, Unde	cidable	08
languages, halting problem of TM, Post	•	0 0		
ranguages, naturing problem of Twi, Tost	correspondence	problem. Complexity. Grow	in rate	

Turing thesis. **Applications:** G.1 Defining syntax of programming language, Appendix J: Security

Textbook 2: 10.1 to 10.7, 12.1, 12.2, 12.8, 12.8.1, 12.8.2

Textbook 1: Appendix: G.1(only), J.1 & J.2

RBT: L1, L2, L3

Course Outcomes: The student will be able to:

- Acquire fundamental understanding of the core concepts in automata theory and Theory of Computation
- Learn how to translate between different models of Computation (e.g., Deterministic and Non-deterministic and Software models).
- Design Grammars and Automata (recognizers) for different language classes and become knowledgeable about restricted models of Computation (Regular, Context Free) and their relative powers.
- Develop skills in formal reasoning and reduction of a problem to a formal model, with an emphasis on semantic precision and conciseness.
- Classify a problem with respect to different models of Computation.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

- 1. Elaine Rich, Automata, Computability and Complexity, 1st Edition, Pearson education, 2012/2013
- 2. K L P Mishra, N Chandrasekaran, 3rd Edition, Theory of Computer Science, PhI, 2012.

Reference Books:

- 1. John E Hopcroft, Rajeev Motwani, Jeffery D Ullman, Introduction to AutomataTheory, Languages, and Computation, 3rd Edition, Pearson Education, 2013
- 2. Michael Sipser: Introduction to the Theory of Computation, 3rd edition, Cengage learning, 2013
- 3. John C Martin, Introduction to Languages and The Theory of Computation, 3rd Edition, Tata McGraw –Hill Publishing Company Limited, 2013
- 4. Peter Linz, "An Introduction to Formal Languages and Automata", 3rd Edition, Narosa Publishers, 1998
- 5. Basavaraj S. Anami, Karibasappa K G, Formal Languages and Automata theory, Wiley India, 2012
- 6. C K Nagpal, Formal Languages and Automata Theory, Oxford University press, 2012.

Faculty can utilize open source tools (like JFLAP) to make teaching and learning more interactive.