	AND ANALYSIS O	F ALGORITHMS e year 2018 -2019)			
(Effective	SEMESTER -	•			
Course Code	18CS42	CIE Marks	40		
Number of Contact Hours/Week	3:2:0	SEE Marks	60		
Total Number of Contact Hours	50	Exam Hours	03		
	CREDITS -	l .			
Course Learning Objectives: This co					
• Explain various computational					
 Apply appropriate method to se 	1	•			
 Describe various methods of al 	• •				
Module 1	igoriumi anarysis.			Contact	
Wiodule 1				Hours	
Introduction: What is an Algorithm?	(T2.1 1) Algorithm	n Specification (T2.1.2)	\ nalveie	10	
Framework (T1:2.1), Performance An Asymptotic Notations: Big-Oh notati Little-oh notation (<i>o</i>), Mathematical with Examples (T1:2.2, 2.3, 2.4). Improcessing, Graph Problems, Combin Stacks, Queues, Graphs, Trees, Sets an RBT: L1, L2, L3	on (O), Omega not analysis of Non-Reportant Problem natorial Problems.	ation (Ω) , Theta notation (cursive and recursive Alg Types: Sorting, Searching Fundamental Data Stru	Θ), and orithms , String		
Module 2					
Divide and Conquer: General metho conquer, Finding the maximum and (T1:4.1, 4.2), Strassen's matrix multidivide and conquer. Decrease and ConRBT: L1, L2, L3	minimum (T2:3.1 , plication (T2:3.8),	3.3, 3.4) , Merge sort, Quadduntages and Disadvant	ick sort	10	
Module 3					
Greedy Method: General method, Coin Change Problem, Knapsack Problem, Job sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm (T1:9.1, 9.2). Single source shortest paths: Dijkstra's Algorithm (T1:9.3). Optimal Tree problem: Huffman Trees and Codes (T1:9.4). Transform and Conquer Approach: Heaps and Heap Sort (T1:6.4).				10	
RBT: L1, L2, L3					
Module 4					
Dynamic Programming: General method with Examples, Multistage Graphs (T2:5.1, 5.2). Transitive Closure: Warshall's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optimal Binary Search Trees, Knapsack problem ((T1:8.2, 8.3, 8.4), Bellman-Ford Algorithm (T2:5.4), Travelling Sales Person problem (T2:5.9), Reliability design (T2:5.8).				10	
RBT: L1, L2, L3					
Module 5	71) NO	.1.1 (TT1.10.1) C C	1	10	
Backtracking: General method (T2:7.1), N-Queens problem (T1:12.1), Sum of subsets problem (T1:12.1), Graph coloring (T2:7.4), Hamiltonian cycles (T2:7.5). Programme and Bound: Assignment Problem, Travelling Sales Person problem (T1:12.2), 0/1 Knapsack problem (T2:8.2, T1:12.2): LC Programme and Bound solution (T2:8.2), FIFO Programme and Bound solution (T2:8.2). NP-Complete and NP-Hard problems: Basic concepts, non-				10	

deterministic algorithms, P, NP, NP-Complete, and NP-Hard classes (T2:11.1).

RBT: L1, L2, L3

Course Outcomes: The student will be able to:

- Describe computational solution to well known problems like searching, sorting etc.
- Estimate the computational complexity of different algorithms.
- Devise an algorithm using appropriate design strategies for problem solving.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

- 1. Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009. Pearson.
- 2. Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press

Reference Books:

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI.
- 2. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).