		ND SIMULATION vstem (CBCS) scheme]				
_ _	om the academi	c year 2016 -2017)				
0.1: 4.0.1	SEMESTER -		20			
Subject Code	15CS834	IA Marks	20			
Number of Lecture Hours/Week	3	Exam Marks		80		
Total Number of Lecture Hours	40	Exam Hours	03	03		
	CREDITS -					
Course objectives: This course wil						
• Explain the basic system con	_					
 Discuss techniques to model 		•	_			
Analyze a system and to ma	ke use of the info	ormation to improve the	e perfor			
Module – 1				Teaching		
T . T	• •	1 1 1		Hours		
** *				10 Hours		
appropriate, Advantages and disadvantages of Simulation; Areas of application, Systems and system environment; Components of a system; Discrete and						
·						
continuous systems, Model of a sys Simulation Simulation examples:						
Principles, Simulation Software:						
Event-Scheduling / Time-Advance						
Scheduling 7 Time 7 Revance	riigoriumi, ivia	nual simulation esing	Lvent			
Module – 2						
Statistical Models in Simulation	:Review of term	inology and concepts.	Useful	10 Hours		
	ibutions. Conti			20 220 622		
process, Empirical distributions.		,,_				
Queuing Models: Characteristics of	f queuing system	ns.Queuing notation.Lo	ng-run			
measures of performance of queuin						
of queuing systems cont,Steady-state behavior of M/G/1 queue, Networks of						
queues,		•				
Module – 3						
Random-NumberGeneration:Prop	perties of rando	om numbers; Generati	on of	10 Hours		
pseudo-random numbers, Techniques for generating random numbers, Tests for						
Random Numbers, Random-Variate Generation: ,Inverse transform technique						
Acceptance-Rejection technique.						
Module – 4						
Input Modeling: Data Collection				10 Hours		
Parameter estimation, Goodness o		•				
process, Selecting input models wit	hout data, Multi	variate and Time-Series	s input			
models.	_					
Estimation of Absolute Perform	* -					
output analysis ,Stochastic nature of	ot output data, N	Measures of performance	ce and			
their estimation, Contd						
Module – 5				10.77		
Measures of performance and the		•	nating	10 Hours		
simulations Continued,Output ana	~		9.32			
Verification, Calibration And	-		_			
verification and validation, Verific	cation of simula	ition models, Verificat	ion of			

simulation models, Calibration and validation of models, Optimization via Simulation.

Course outcomes: The students should be able to:

- Explain the system concept and apply functional modeling method to model the activities of a static system
- Describe the behavior of a dynamic system and create an analogous model for a dynamic system;
- Simulate the operation of a dynamic system and make improvement according to the simulation results.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol: Discrete-Event System Simulation, 5 th Edition, Pearson Education, 2010.

Reference Books:

- 1. Lawrence M. Leemis, Stephen K. Park: Discrete Event Simulation: A First Course, Pearson Education, 2006.
- 2. Averill M. Law: Simulation Modeling and Analysis, 4th Edition, Tata McGraw-Hill, 2007