HIGH DED	PODMANCI	E COMPUTING			
		ystem (CBCS) scheme]			
		ic year 2016 -2017)			
	SEMESTER -				
Subject Code	15CS831	IA Marks	20)	
Number of Lecture Hours/Week	3	Exam Marks	80)	
Total Number of Lecture Hours	40	Exam Hours	03		
	CREDITS -				
Course objectives: This course will					
• Introduce students the design, analysis, and implementation, of high performance					
computational science and en	•	-			
Illustrate on advanced compu			arallel	languages.	
and performance-oriented con		,			
Module – 1	1 0			Teaching	
				Hours	
Introduction: Computational Science and Engineering: Computational				10 Hours	
Science and Engineering Applications; characteristics and requirements, Review					
of Computational Complexity, Performance: metrics and measurements,					
Granularity and Partitioning, Locality: temporal/spatial/stream/kernel, Basic					
methods for parallel programming, Real-world case studies (drawn from multi-					
scale, multi-discipline applications)		7119			
Module – 2		1			
High-End Computer Systems: Memory Hierarchies, Multi-core Processors:				10 Hours	
Homogeneous and Heterogeneous, Shared-memory Symmetric Multiprocessors,					
Vector Computers, Distributed Memory Computers, Supercomputers and					
Petascale Systems, Application Accelerators / Reconfigurable Computing, Novel					
computers: Stream, multithreaded, an	id purpose-bui	<u>It</u>			
Module – 3	11 11 1	1 1 0 1	ъ.	40 TT	
Parallel Algorithms: Parallel models: ideal and real frameworks, Basic Techniques: Balanced Trees, Pointer Jumping, Divide and Conquer, Partitioning,				10 Hours	
Regular Algorithms: Matrix operations and Linear Algebra, Irregular Algorithms:					
Lists, Trees, Graphs, Randomization: Parallel Pseudo-Random Number					
Generators, Sorting, Monte Carlo techniques					
Module – 4	imiques				
Parallel Programming: Revealing	concurrency	in applications Task	and	10 Hours	
Functional Parallelism, Task School	•	11		10 110415	
Primitives (collective operations), SP	<u> </u>				
I/O and File Systems, Parallel Matlabs (Parallel Matlab, Star-P, Matlab MPI),					
Partitioning Global Address Space (PGAS) languages (UPC, Titanium, Global					
Arrays)	(1 0110) 101180	ages (er e, rivarium, e	100011		
Module – 5					
Achieving Performance: Measuri	ng performan	ice, Identifying perform	nance	10 Hours	
bottlenecks, Restructuring applications for deep memory hierarchies, Partitioning					
applications for heterogeneous reso	-	•	_		
frameworks		<u> </u>			
Course outcomes: The students shou	ıld be able to:				
Illustrate the key factors affective	cting performa	nce of CSE applications,	and		

• Make mapping of applications to high-performance computing systems, and

• Apply hardware/software co-design for achieving performance on real-world applications

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Introduction to Parallel Computing, AnanthGrama, Anshul Gupta, George Karypis, and Vipin Kumar, 2nd edition, Addison-Welsey, 2003.
- 2. Petascale Computing: Algorithms and Applications, David A. Bader (Ed.), Chapman & Hall/CRC Computational Science Series, 2007

Reference Books:

- 1. Grama, A. Gupta, G. Karypis, V. Kumar, An Introduction to Parallel Computing, Design and Analysis of Algorithms: 2/e, Addison-Wesley, 2003.
- 2. G.E. Karniadakis, R.M. Kirby II, Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms and their Implementation, Cambridge University Press, 2003.
- 3. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, 2/E, Prentice Hall, 2005.
- 4. M.J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, 2004.
- 5. G.S. Almasi and A. Gottlieb, Highly Parallel Computing, 2/E, Addison-Wesley, 1994.
- 6. David Culler Jaswinder Pal Singh,"Parallel Computer Architecture: A hardware/Software Approach", Morgan Kaufmann, 1999.
- 7. Kai Hwang, "Scalable Parallel Computing", McGraw Hill 1998.