СОМРИТ	TER VISION AN	ND ROBOTICS			
		stem (CBCS) scheme]			
(Effective fr		c year 2016 -2017)			
Subject Code	SEMESTER -	- VII IA Marks	20		
Subject Code	15CS752		20		
Number of Lecture Hours/Week	3	Exam Marks	80		
Total Number of Lecture Hours	40 CREDITS –	Exam Hours	03		
Course objectives: This course wil					
Review image processing techniques.					
 Review image processing tec Explain shape and region and 	•	puter vision			
Illustrate Hough Transform a	•	ns to detect lines circle	e allines) C	
 Contrast three-dimensional 			s, empse n analysi		
applications of computer visi		teeninques, motion	i anarysi	is and	
Module – 1	on uigonumis			Teaching	
				Hours	
CAMERAS: Pinhole Cameras, I	Radiometry - 1	Measuring Light: Li	ght in	8 Hours	
Space, Light Surfaces, Importan					
Shading: Qualitative Radiometry,					
Models, Application: Photometri			_		
Models, Color: The Physics of C			senting		
Color, A Model for Image Color, S	urface Color fron	n Image Color.			
Module – 2	Commodution Ch	ift Invariant Lincon Co	·	0 II	
Linear Filters: Linear Filters and Spatial Frequency and Fourier Tr				8 Hours	
Templates, Edge Detection: Nois		-			
Texture: Representing Texture,					
Pyramids, Application: Synthesis					
Texture.		T			
Module – 3	V				
The Geometry of Multiple View	vs: Two Views,	Stereopsis: Reconstr	uction,	8 Hours	
Human Stereposis, Binocular Fusi	on, Using More	Cameras, Segmentat	ion by		
Clustering: What Is Segmentation?, Human Vision: Grouping and Getstalt,					
Applications: Shot Boundary Detection and Background Subtraction, Image					
Segmentation by Clustering Pixels,	Segmentation by	Graph-Theoretic Clus	tering,		
Module – 4	701 II 1 70	C F''' I'	E::	0.11	
Segmentation by Fitting a Model	•		_	8 Hours	
Curves, Fitting as a Probabilistic I and Fitting Using Probabilistic M					
Segmentation, The EM Algorithm	,	,	<u> </u>		
Models: Tracking as an Abstract		-			
Kalman Filtering, Data Association		•	roacis,		
Module – 5	, <u>11</u>	F - ****			
Geometric Camera Models: El	ements of Anal	lytical Euclidean Geo	metry,	8 Hours	
Camera Parameters and the Perspe		•	•		
Projection Equations, Geometr		Calibration: Least-S	-		
Parameter Estimation, A Linear Ap	•	_			
Distortion into Account, Analytica	_				
Robot Localization, Model- Bas	ed Vision: Init	nal Assumptions, Ob	taining		

Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Application: Registration In Medical Imaging Systems, Curved Surfaces and Alignment.

Course outcomes: The students should be able to:

- Implement fundamental image processing techniques required for computer vision
- Perform shape analysis
- Implement boundary tracking techniques
- Apply chain codes and other region descriptors
- Apply Hough Transform for line, circle, and ellipse detections.
- Apply 3D vision techniques.
- Implement motion related techniques.
- Develop applications using computer vision techniques.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009.

Reference Books:

2. E. R. Davies: Computer and Machine Vision – Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013.