	MACHINE LE	ARNING		
[As per Choice Based Credit System (CBCS) scheme]				
(Effective from the academic year 2016 -2017)				
SEMESTER – VII				
Subject Code	15CS73	IA Marks	2	0
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
CREDITS – 04				
Course Objectives: This course will enable students to				
Define machine learning and problems relevant to machine learning.				
Differentiate supervised, unsupervised and reinforcement learning				
• Apply neural networks, Bayes classifier and k nearest neighbor, for problems appear in				
machine learning.				
 Perform statistical analysis of machine learning techniques. 				
Module – 1				Teaching
				Hours
Introduction: Well posed learning problems, Designing a Learning system,			10 Hours	
Perspective and Issues in Machine Learning.				
Concept Learning: Concept learning task, Concept learning as search, Find-S				
algorithm, Version space, Candidate Elimination algorithm, Inductive Bias.				
Text Book1, Sections: 1.1 – 1.3, 2.1-2.5, 2.7				
Module – 2				
Decision Tree Learning: Decision tree representation, Appropriate problems for				10 Hours
decision tree learning, Basic decision tree learning algorithm, hypothesis space search				
in decision tree learning, Inductive bias in decision tree learning, Issues in decision				
tree learning.				
Text Book1, Sections: 3.1-3.7				
Module – 3				
Artificial Neural Networks: Introduction, Neural Network representation,				08 Hours
Appropriate problems, Perceptrons, Backpropagation algorithm.				
Text book 1, Sections: 4.1 – 4.6				
Module – 4				
Bayesian Learning: Introduction	•	•	-	10 Hours
learning, ML and LS error hypothesis, ML for predicting probabilities, MDL				
principle, Naive Bayes classifier, Bayesian belief networks, EM algorithm				
Text book 1, Sections: 6.1 – 6.6, 6.9, 6.11, 6.12				
Module – 5				
Evaluating Hypothesis: Motivati		* *		12 Hours
sampling theorem, General approach for deriving confidence intervals, Difference in				
error of two hypothesis, Comparing learning algorithms.				
Instance Based Learning: Introduction, k-nearest neighbor learning, locally				
weighted regression, radial basis fur		-		
Reinforcement Learning: Introduc	ction, Learning T	ask, Q Learning		

• Identify the problems for machine learning. And select the either supervised,

Text book 1, Sections: 5.1-5.6, 8.1-8.5, 13.1-13.3

Course Outcomes: After studying this course, students will be able to

unsupersvised or reinforcement learning.

- Explain theory of probability and statistics related to machine learning
- Investigate concept learning, ANN, Bayes classifier, k nearest neighbor, Q,

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.

Reference Books:

- 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics.
- 2. Ethem Alpaydın, Introduction to machine learning, second edition, MIT press.