[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017)			
	SEMESTER – VI		
Subject Code	15CS653	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS – 03		
Course objectives: This course will e	enable students to		
Formulate optimization proble	em as a linear progra	amming problem.	
• Solve optimization problems u	using simplex methor	od.	
Formulate and solve transport			
Apply game theory for decision	on making problems		
Module – 1			Teaching
			Hours
Introduction, Linear Programmin	O	O ,	
impact of OR; Defining the problem and gathering data; Formulating a			
mathematical model; Deriving solutions from the model; Testing the model;			el;
Preparing to apply the model; Implem			
Introduction to Linear Programm			
Assumptions of LPP, Formulation	of LPP and Gra	iphical method vario	18
examples.			
Module – 2		1.0	0.77
Simplex Method -1 : The essence of the simplex method; Setting up the simplex method; Types of variables, Algebra of the simplex method; the simplex method			
	_	-	
in tabular form; Tie breaking in the smethod.	miplex method, big	g ivi illetilot, i wo pila	SC
Module – 3			
Simplex Method – 2: Duality Theo	ry - The essence of	of duality theory Prim	al 8 Hours
dual relationship, conversion of primal to dual problem and vice versa. The dual			
simplex method.	ar to daar prooferr	and vice versu. The da	
Module – 4			
Transportation and Assignment Pr	oblems: The transr	ortation problem. Initi	al 8 Hours
Basic Feasible Solution (IBFS) by		•	
Minima Method, Vogel's Approxima			
Distribution Method (MODI). The A		•	
for the assignment problem. Mini			
transportation and assignment probler			
Module – 5			
Game Theory: Game Theory: The fo	ormulation of two p	ersons, zero sum game	s; 8 Hours
saddle point, maximin and minimax p			pe
example; Games with mixed strategie			
example; Games with mixed strategie Metaheuristics: The nature of			ed
example; Games with mixed strategie Metaheuristics: The nature of Annealing, Genetic Algorithms.	Metaheuristics, Ta		ed
example; Games with mixed strategie Metaheuristics: The nature of	Metaheuristics, Ta	ıbu Search, Simulate	ed

- Select and apply optimization techniques for various problems.
- Model the given problem as transportation and assignment problem and solve.
- Apply game theory for decision support system.

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. D.S. Hira and P.K. Gupta, Operations Research, (Revised Edition), Published by S. Chand & Company Ltd, 2014

Reference Books:

- 1. S Kalavathy, Operation Research, Vikas Publishing House Pvt Limited, 01-Aug-2002
- 2. S D Sharma, Operation Research, Kedar Nath Ram Nath Publishers.