		WAREHOUSING			
		stem (CBCS) scheme] c year 2016 -2017)			
(Effective In	om the academic - SEMESTER	•			
Subject Code	15CS651	IA Marks	20		
Number of Lecture Hours/Week	3	Exam Marks		_	
Total Number of Lecture Hours	40		80		
Total Number of Lecture Hours	CREDITS –	Exam Hours	03		
Course objectives: This course wil					
Define multi-dimensional da		10			
		otion and alvetoning and	1		
Explain rules related to assoCompare and contrast between			•	thme	
Module – 1	ten different class	sification and clustering	gaigon	Teachin	
Wodule – I				Hours	
Data Warehousing & modeling	: Basic Conce	ents: Data Warehousi	ng: A	8 Hours	
multitier Architecture, Data wareho		_	-	0 220075	
and virtual warehouse, Extraction,		1			
multidimensional data model, S		•		V	
Schemas for multidimensional Da	*				
Hierarchies, Measures: Their Cate					
Operations.	8	7,			
Module – 2					
Data warehouse implementation	n& Data min	ing: Efficient Data	Cube	8 Hours	
computation: An overview, Indexin					
Efficient processing of OLAP Quer					
MOLAP Versus HOLAP.: Introdu					
Mining Tasks, Data: Types of Data	, Data Quality, D	Data Preprocessing, Me	asures		
of Similarity and Dissimilarity,		1			
Module – 3				I.	
Association Analysis: Association	Analysis: Proble	em Definition, Frequen	t Item	8 Hours	
set Generation, Rule generation. A	•	•			
Item sets, FP-Growth Algorithm, E		_	•		
Module – 4				l	
Classification: Decision Trees In	nduction, Method	d for Comparing Class	sifiers,	8 Hours	
Rule Based Classifiers, Nearest Nei	ghbor Classifiers	s, Bayesian Classifiers.			
Module – 5	-				
Clustering Analysis: Overview	v, K-Means, A	Agglomerative Hierar	rchical	8 Hours	
Clustering, DBSCAN, Cluster Ev	aluation, Densit	ty-Based Clustering, (Graph-		
Based Clustering, Scalable Clusteri	ng Algorithms.		-		
Course outcomes: The students sho	ould be able to:				
Identify data mining proble	ms and implemen	nt the data warehouse			
• Write association rules for a	-				
Choose between classification	•				
Question paper pattern:	<u> </u>				
The question paper will have TEN of	questions.				
THE SHALL STATE OF THE STATE OF					
There will be TWO questions from					

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Pearson, First impression, 2014.
- 2. Jiawei Han, Micheline Kamber, Jian Pei: Data Mining -Concepts and Techniques, 3rd Edition, Morgan Kaufmann Publisher, 2012.

Reference Books:

- 1. Sam Anahory, Dennis Murray: Data Warehousing in the Real World, Pearson, Tenth Impression, 2012.
- 2. Michael.J.Berry,Gordon.S.Linoff: Mastering Data Mining, Wiley Edition, second edition, 2012.