	PERATING SYS	STEMS stem (CBCS) scheme]	
- -	•	c year 2016 -2017)	
	SEMESTER -	- VI	
Subject Code	15CS64	IA Marks	20
Number of Lecture Hours/Week	4	Exam Marks S	30
Total Number of Lecture Hours	50	Exam Hours ()3
	CREDITS -	04	
Course objectives: This course will	enable students	to	
Introduce concepts and term	inology used in (OS	
 Explain threading and multit 	hreaded systems		
 Illustrate process synchroniz 	ation and concep	ot of Deadlock	
 Introduce Memory and Virtu techniques 	al memory mana	agement, File system and sto	orage
Module – 1			Teaching Hours
Introduction to operating systems	-		

	Hours	
Introduction to operating systems, System structures: What operating systems		
do; Computer System organization; Computer System architecture; Operating		
System structure; Operating System operations; Process management; Memory		
management; Storage management; Protection and Security; Distributed system;		
Special-purpose systems; Computing environments. Operating System Services;		
User - Operating System interface; System calls; Types of system calls; System		
programs; Operating system design and implementation; Operating System		
structure; Virtual machines; Operating System generation; System boot. Process		
Management Process concept; Process scheduling; Operations on processes;		
Inter process communication		
Module – 2		
Multi-threaded Programming: Overview; Multithreading models; Thread	10 Hours	
Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling		
Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread		
scheduling. Process Synchronization: Synchronization: The critical section		
problem; Peterson's solution; Synchronization hardware; Semaphores; Classical		
problems of synchronization; Monitors.		
Module – 3		
Deadlocks : Deadlocks; System model; Deadlock characterization; Methods for	10 Hours	
handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock		
detection and recovery from deadlock. Memory Management: Memory		
management strategies: Background; Swapping; Contiguous memory allocation;		
Paging; Structure of page table; Segmentation.		
Module – 4		
Virtual Memory Management: Background; Demand paging; Copy-on-write;	10 Hours	
Page replacement; Allocation of frames; Thrashing. File System,		
Implementation of File System: File system: File concept; Access methods;		
Directory structure; File system mounting; File sharing; Protection:		
Implementing File system: File system structure; File system implementation;		
Directory implementation; Allocation methods; Free space management.		
Module – 5		
Secondary Storage Structures, Protection: Mass storage structures; Disk	10 Hours	

structure; Disk attachment; Disk scheduling; Disk management; Swap space management. Protection: Goals of protection, Principles of protection, Domain of protection, Access matrix, Implementation of access matrix, Access control, Revocation of access rights, Capability- Based systems. Case Study: The Linux Operating System: Linux history; Design principles; Kernel modules; Process management; Scheduling; Memory Management; File systems, Input and output; Inter-process communication.

Course outcomes: The students should be able to:

- Demonstrate need for OS and different types of OS
- Apply suitable techniques for management of different resources
- Use processor, memory, storage and file system commands
- Realize the different concepts of OS in platform of usage through case studies

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles 7th edition, Wiley-India, 2006.

Reference Books

- 1. Ann McHoes Ida M Fylnn, Understanding Operating System, Cengage Learning, 6th Edition
- 2. D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-Hill, 2013.
- 3. P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition, PHI(EEE), 2014.
- 4. William Stallings Operating Systems: Internals and Design Principles, 6th Edition, Pearson.