SOCIAL NETWORK ANALYSIS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – V				
ubject Code	15IS552	IA Marks	20	
fumber of Lecture Hours/Week	03	Exam Marks	80	
otal Number of Lecture Hours	40	Exam Hours	03	
CREDITS – 03				

Course objectives: This course will enable students to

• Discuss essential knowledge of network analysis applicable to real world data, with examples from today's most popular social networks.

Module 1	Teaching	
	Hours	
Introduction to social network analysis and Descriptive network analysis:		
Introduction to new science of networks. Networks examples. Graph theory		
basics. Statistical network properties. Degree distribution, clustering coefficient.		
Frequent patterns. Network motifs. Cliques and k-cores.		
Module 2		
Network structure, Node centralities and ranking on network: Nodes and edges, network diameter and average path length. Node centrality metrics: degree, closeness and betweenness centrality. Eigenvector centrality and PageRank. Algorithm HITS.	8 Hours	
Module 3		
Network communities and Affiliation networks: Networks communities. Graph partitioning and cut metrics. Edge betweenness. Modularity clustering. Affiliation network and bipartite graphs. 1-mode projections. Recommendation systems.	8 Hours	
Module 4		
Information and influence propagation on networks and Network visualization: Social Diffusion. Basic cascade model. Influence maximization. Most influential nodes in network. Network visualization and graph layouts. Graph sampling. Low -dimensional projections	8 Hours	
Module 5		
Social media mining and SNA in real world: FB/VK and Twitter analysis: Natural language processing and sentiment mining. Properties of large social networks: friends, connections, likes, re-tweets.	8 Hours	

Course Outcomes: The students should be able to:

- Define notation and terminology used in network science.
- Demonstrate, summarize and compare networks.
- Explain basic principles behind network analysis algorithms.
- Analyzing real world network.

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. David Easley and John Kleinberg. "Networks, Crowds, and Markets: Reasoning About a Highly Connected World." Cambridge University Press 2010.

- 2. Eric Kolaczyk, Gabor Csardi. "Statistical Analysis of Network Data with R (Use R!)". Springer, 2014.
- 3. Stanley Wasserman and Katherine Faust. "Social Network Analysis. Methods and Applications." Cambridge University Press, 1994.

Reference Books:

1. **NIL**

