		COMPUTABILITY vstem (CBCS) scheme]			
	•	ic year 2016 -2017)			
(Effective II)	SEMESTER 1	•			
Subject Code	15CS54	IA Marks	20		
Number of Lecture Hours/Week	4	Exam Marks	80		
Total Number of Lecture Hours	50	Exam Hours	03		
Total Number of Lecture Hours	CREDITS -		03		
Course objectives: This course wil					
• Introduce core concepts in A					
 Identify different Formal lar 					
 Design Grammars and Reco 		-			
 Design Grammars and Reco Prove or disprove theorems 	=				
Determine the decidability a					
Module – 1	nu muaciaomity	of Computational proof	CIIIS	Teaching	
Module – 1				Hours	
Why study the Theory of Com	nutation Land	guages and Strings S		10 Hour	
Languages. A Language Hierard	•		_	IV IIVuI	
(FSM): Deterministic FSM,			FSM.		
Nondeterministic FSMs, From FS			,		
FSMs, Minimizing FSMs, Canoni					
Transducers, Bidirectional Transducers		gurur rungungus, r mitt	2000		
Textbook 1: Ch 1,2, 3,4, 5.1 to 5.1					
Module – 2					
Regular Expressions (RE): what i	s a RE?, Kleen	e's theorem, Application	ons of	10 Hour	
REs, Manipulating and Simplify	ing REs. Reg	gular Grammars: Defin	nition,		
Regular Grammars and Regular lan	nguages. Regul	ar Languages (RL) and	Non-		
regular Languages: How many RLs	s, To show that	a language is regular, C	losure		
properties of RLs, to show some lar	0 0				
Textbook 1: Ch 6, 7, 8: 6.1 to 6.4,	7.1, 7.2, 8.1 to 8	3.4			
Module – 3					
Context-Free Grammars(CFG): Intr		•		10 Hour	
CFGs and languages, designing					
Grammar is correct, Derivation a	,	<i>U</i> 3,			
Pushdown Automata (PDA): Defin					
and Non-deterministic PDAs, I		O ,			
equivalent definitions of a PDA, alt		•	•		
Textbook 1: Ch 11, 12: 11.1 to 11.	8, 12.1, 12.2, 12	4,4, 12.5, 12.6			
Module – 4	•	TT/I 1 1 C		40.77	
Context-Free and Non-Context-Fr	0 0			10 Hour	
Languages(CFL) fit, Showing a language is context-free, Pumping theorem for					
CFL, Important closure properties of CFLs, Deterministic CFLs. Algorithms and Decision Procedures for CFLs: Decidable questions, Un-decidable questions.					
	-	-			
Turing Machine: Turing machine n by TM, design of TM, Techniques			aumity		
Textbook 1: Ch 13: 13.1 to 13.5, (to 0 6		
Module – 5	UII 17. 17.1, 14.	4, 1 CALDUUK 4, CH 7.1 1	1U 7.U		
Variants of Turing Machines (TM	The model (of Linear Rounded out	mata.	10 Hour	
Decidability: Definition of an al				10 110UL	
Decidadiniy, Dennidon ol an al	goriumi, decid	aomity, decidable lang	uages,		

Undecidable languages, halting problem of TM, Post correspondence problem. Complexity: Growth rate of functions, the classes of P and NP, Quantum Computation: quantum computers, Church-Turing thesis.

Textbook 2: Ch 9.7 to 9.8, 10.1 to 10.7, 12.1, 12.2, 12.8, 12.8.1, 12.8.2

Course outcomes: The students should be able to:

- Acquire fundamental understanding of the core concepts in automata theory and Theory of Computation
- Learn how to translate between different models of Computation (e.g., Deterministic and Non-deterministic and Software models).
- Design Grammars and Automata (recognizers) for different language classes and become knowledgeable about restricted models of Computation (Regular, Context Free) and their relative powers.
- Develop skills in formal reasoning and reduction of a problem to a formal model, with an emphasis on semantic precision and conciseness.
- Classify a problem with respect to different models of Computation.

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Elaine Rich, Automata, Computability and Complexity, 1st Edition, Pearson Education, 2012/2013
- 2. K L P Mishra, N Chandrasekaran, 3rd Edition, Theory of Computer Science, PhI, 2012.

Reference Books:

- 1. John E Hopcroft, Rajeev Motwani, Jeffery D Ullman, Introduction to AutomataTheory, Languages, and Computation, 3rd Edition, Pearson Education, 2013
- 2. Michael Sipser: Introduction to the Theory of Computation, 3rd edition, Cengage learning, 2013
- 3. John C Martin, Introduction to Languages and The Theory of Computation, 3rd Edition, Tata McGraw –Hill Publishing Company Limited, 2013
- 4. Peter Linz, "An Introduction to Formal Languages and Automata", 3rd Edition, Narosa Publishers, 1998
- 5. Basavaraj S. Anami, Karibasappa K G, Formal Languages and Automata theory, Wiley India, 2012
- 6. C K Nagpal, Formal Languages and Automata Theory, Oxford University press, 2012.