COMPUTER NETWORKS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – V				
Subject Code	15CS52	IA Marks	20	
Number of Lecture Hours/Week	4	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
	CREDITS – 04			

Course objectives: This course will enable students to

- Demonstration of application layer protocols
- Discuss transport layer services and understand UDP and TCP protocols
- Explain routers, IP and Routing Algorithms in network layer
- Disseminate the Wireless and Mobile Networks covering IEEE 802.11 Standard
- Illustrate concepts of Multimedia Networking, Security and Network Management

Illustrate concepts of Multimedia Networking, Security and Network Management			
Module – 1	Teaching		
	Hours		
Application Layer: Principles of Network Applications: Network Application	10 Hours		
Architectures, Processes Communicating, Transport Services Available to			
Applications, Transport Services Provided by the Internet, Application-Layer			
Protocols. The Web and HTTP: Overview of HTTP, Non-persistent and			
Persistent Connections, HTTP Message Format, User-Server Interaction:			
Cookies, Web Caching, The Conditional GET, File Transfer: FTP Commands &			
Replies, Electronic Mail in the Internet: SMTP, Comparison with HTTP, Mail			
Message Format, Mail Access Protocols, DNS; The Internet's Directory Service:			
Services Provided by DNS, Overview of How DNS Works, DNS Records and			
Messages, Peer-to-Peer Applications: P2P File Distribution, Distributed Hash			
Tables, Socket Programming: creating Network Applications: Socket			
Programming with UDP, Socket Programming with TCP.			
T1: Chap 2			
Module – 2			
Transport Layer: Introduction and Transport-Layer Services: Relationship	10 Hours		
Between Transport and Network Layers, Overview of the Transport Layer in the			
Internet, Multiplexing and Demultiplexing: Connectionless Transport: UDP,UDP			
Segment Structure, UDP Checksum, Principles of Reliable Data Transfer:			
Building a Reliable Data Transfer Protocol, Pipelined Reliable Data Transfer			
Protocols, Go-Back-N, Selective repeat, Connection-Oriented Transport TCP:			
The TCP Connection, TCP Segment Structure, Round-Trip Time Estimation and			
Timeout, Reliable Data Transfer, Flow Control, TCP Connection Management,			
Principles of Congestion Control: The Causes and the Costs of Congestion,			
Approaches to Congestion Control, Network-assisted congestion-control			
example, ATM ABR Congestion control, TCP Congestion Control: Fairness.			
T1: Chap 3			
Module – 3			
The Network layer: What's Inside a Router?: Input Processing, Switching,	10 Hours		
Output Processing, Where Does Queuing Occur? Routing control plane, IPv6,A			
Brief foray into IP Security, Routing Algorithms: The Link-State (LS) Routing			
Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing,			

Routing in the Internet, Intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter/AS Routing: BGP, Broadcast and Multicast Routing: Broadcast Routing Algorithms and Multicast.

T1: Chap 4:4.3-4.7

Module – 4

Wireless and Mobile Networks: Cellular Internet Access: An Overview of Cellular Network Architecture, 3G Cellular Data Networks: Extending the Internet to Cellular subscribers, On to 4G:LTE,Mobility management: Principles, Addressing, Routing to a mobile node, Mobile IP, Managing mobility in cellular Networks, Routing calls to a Mobile user, Handoffs in GSM, Wireless and Mobility: Impact on Higher-layer protocols.

10 Hours

T1: Chap: 6: 6.4-6.8

Module - 5

Multimedia Networking: Properties of video, properties of Audio, Types of multimedia Network Applications, Streaming stored video: UDP Streaming, HTTP Streaming, Adaptive streaming and DASH, content distribution Networks, case studies: Netflix, You Tube and Kankan.

10 Hours

Network Support for Multimedia: Dimensioning Best-Effort Networks, Providing Multiple Classes of Service, Diffserv, Per-Connection Quality-of-Service (QoS) Guarantees: Resource Reservation and Call Admission

T1: Chap: 7: 7.1,7.2,7.5

Course outcomes: The students should be able to:

- Explain principles of application layer protocols
- Recognize transport layer services and infer UDP and TCP protocols
- Classify routers, IP and Routing Algorithms in network layer
- Understand the Wireless and Mobile Networks covering IEEE 802.11 Standard
- Describe Multimedia Networking and Network Management

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. James F Kurose and Keith W Ross, Computer Networking, A Top-Down Approach, Sixth edition, Pearson, 2017.

Reference Books:

- 1. Behrouz A Forouzan, Data and Communications and Networking, Fifth Edition, McGraw Hill, Indian Edition
- 2. Larry L Peterson and Brusce S Davie, Computer Networks, fifth edition, ELSEVIER
- 3. Andrew S Tanenbaum, Computer Networks, fifth edition, Pearson
- 4. Mayank Dave, Computer Networks, Second edition, Cengage Learning