DESIGN AND	ANALYSIS O	F ALGORITHMS			
[As per Choice	Based Credit Syste	m (CBCS) scheme]			
(Effective fu	rom the academic y				
	SEMESTER -	- IV			
Subject Code	15CS43	IA Marks	2	20	
Number of Lecture Hours/Week	04	Exam Marks	8	80	
Total Number of Lecture Hours	50	Exam Hours	0	03	
	CREDITS -	04			
Course objectives: This course will	enable students to				
 Explain various computation 	nal problem solving	techniques.			
 Apply appropriate method to 	solve a given probl	em.			
 Describe various methods of 	f algorithm analysis.				
Module 1				Teachin	
				Hours	
Introduction: What is an Algorithm? (T2:1.1), Algorithm Specification (T2:1.2),				10 Hour	
Analysis Framework (T1:2.1), P					
complexity (T2:1.3). Asymptotic N					
Theta notation (Θ), and Little-oh no					
and recursive Algorithms with Exam	=				
Sorting, Searching, String proces	-				
Fundamental Data Structures: Sta	acks, Queues, Graph	s, Trees, Sets and Dicti	onaries.	0 W	
(T1:1.3,1.4)					
Module 2	6.1.13(10)(2), 19		<u> </u>		
Divide and Conquer: General met		•		10 Hour	
and conquer, Finding the maximum					
sort (T1:4.1 , 4.2), Strassen's n	_				
Disadvantages of divide and conque	er. Decrease and Co	onquer Approach: Top	ological		
Sort. (T1:5.3)					
Module 3				T	
Greedy Method: General method		•		10 Hour	
sequencing with deadlines (T2:4.1,					
Algorithm, Kruskal's Algorithm (T	, ,	-	3		
Algorithm (T1:9.3). Optimal Tre			T1:9.4).		
Transform and Conquer Approac	h: Heaps and Heap S	Sort (T1:6.4).			
Module 4					
Dynamic Programming: General in	•			10 Hour	
5.2). Transitive Closure: Warsha			•		
Algorithm, Optimal Binary Search	_	-			
Bellman-Ford Algorithm (T2:5.4), T	Travelling Sales Pers	on problem (T2:5.9), Re	eliability		
decign (T2.5 9)					
Module 5					
Module 5	:7.1), N-Queens pro	blem (T1:12.1), Sum of	subsets	10 Hour	
design (T2:5.8). Module 5 Backtracking: General method (T2 problem (T1:12.1), Graph coloring				10 Hour	
Module 5 Backtracking: General method (T2	(T2:7.4), Hamiltonia	an cycles (T2:7.5). Bran	nch and	10 Hour	
Module 5 Backtracking: General method (T2 problem (T1:12.1), Graph coloring	(T2:7.4), Hamiltonia ravelling Sales Pe	an cycles (T2:7.5). Brainson problem (T1:12.	nch and .2), 0/1	10 Hour	

concepts, non-deterministic algorithms, P, NP, NP-Complete, and NP-Hard classes (T2:11.1).

Course Outcomes: After studying this course, students will be able to

- Describe computational solution to well known problems like searching, sorting etc.
- Estimate the computational complexity of different algorithms.
- Devise an algorithm using appropriate design strategies for problem solving.

Graduate Attributes

- Engineering Knowledge
- Problem Analysis
- Design/Development of Solutions
- Conduct Investigations of Complex Problems
- Life-Long Learning

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- T1. Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009. Pearson.
- T2. Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press

Reference Books:

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI
- 2. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education)