ANALOG AND DIGITAL ELECTRONICS LABORATORY

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016)

SEMESTER - III

Laboratory Code	15CSL37	IA Marks	20
Number of Lecture Hours/Week	01I + 02P	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03

CREDITS - 02

Course objectives: This laboratory course enable students to get practical experience in design, assembly and evaluation/testing of

- Analog components and circuits including Operational Amplifier, Timer, etc.
- Combinational logic circuits.
- Flip Flops and their operations
- Counters and Registers using Flip-flops.
- Synchronous and Asynchronous Sequential Circuits.
- A/D and D/A Converters

Descriptions (if any)

Any simulation package like MultiSim / P-spice /Equivalent software may be used.

Faculty-in-charge should demonstrate and explain the required hardware components and their functional Block diagrams, timing diagrams etc. Students have to prepare a write-up on the same and include it in the Lab record and to be evaluated.

Laboratory Session-1: Write-upon analog components; functional block diagram, Pin diagram (if any), waveforms and description. The same information is also taught in theory class; this helps the students to understand better.

Laboratory Session-2: Write-upon Logic design components, pin diagram (if any), Timing diagrams, etc. The same information is also taught in theory class; this helps the students to understand better.

Note: These TWO Laboratory sessions are used to fill the gap between theory classes and practical sessions. Both sessions are to be evaluated for 20 marks as lab experiments.

Laboratory Experiments:

- 1. a) Design and construct a Schmitt trigger using Op-Amp for given UTP and LTP values and demonstrate its working.
 - b) Design and implement a Schmitt trigger using Op-Amp using a simulation package for two sets of UTP and LTP values and demonstrate its working.
- 2. a) Design and construct a rectangular waveform generator (Op-Amp relaxation oscillator) for given frequency and demonstrate its working.
 - b) Design and implement a rectangular waveform generator (Op-Amp relaxation oscillator) using a simulation package and demonstrate the change in frequency when all resistor values are doubled.
- 3. Design and implement an Astable multivibrator circuit using 555 timer for a given frequency and duty cycle.

NOTE: hardware and software results need to be compared

Continued:

- 4. Design and implement Half adder, Full Adder, Half Subtractor, Full Subtractor using basic gates.
- 5. a) Given a 4-variable logic expression, simplify it using Entered Variable Map and realize the simplified logic expression using 8:1 multiplexer IC.
 - b) Design and develop the Verilog /VHDL code for an 8:1 multiplexer. Simulate and verify its working.
- 6. a) Design and implement code converter I)Binary to Gray (II) Gray to Binary Code using basic gates.
- 7. Design and verify the Truth Table of 3-bit Parity Generator and 4-bit Parity Checker using basic Logic Gates with an even parity bit.
- 8. a) Realize a J-K Master / Slave Flip-Flop using NAND gates and verify its truth table
 - b) Design and develop the Verilog / VHDL code for D Flip-Flop with positive-edge triggering. Simulate and verify its working.
- 9. a) Design and implement a mod-n (n<8) synchronous up counter using J-K Flip-Flop ICs and demonstrate its working.
 - b) Design and develop the Verilog / VHDL code for mod-8 up counter. Simulate and verify its working.
- 10. Design and implement an asynchronous counter using decade counter IC to count up from 0 to n (n<=9) and demonstrate on 7-segment display (using IC-7447).
- 11. Generate a Ramp output waveform using DAC0800 (Inputs are given to DAC through IC74393 dual 4-bit binary counter).

Study experiment

12. To study 4-bitALU using IC-74181.

Course outcomes:

On the completion of this laboratory course, the students will be able to:

- Use various Electronic Devices like Cathode ray Oscilloscope, Signal generators, Digital Trainer Kit, Multimeters and components like Resistors, Capacitors, Op amp and Integrated Circuit.
- Design and demonstrate various combinational logic circuits.
- Design and demonstrate various types of counters and Registers using Flip-flops
- Use simulation package to design circuits.
- Understand the working and implementation of ALU.

Graduate Attributes (as per NBA)

- 1. Engineering Knowledge
- 2. Problem Analysis
- 3. Design/Development of Solutions
- 4. Modern Tool Usage

Conduction of Practical Examination:

- 1. All laboratory experiments (1 to 11 nos) are to be included for practical examination.
- 2. Students are allowed to pick one experiment from the lot.
- 3. Strictly follow the instructions as printed on the cover page of answer script.
- 4. Marks distribution:
 - a) For questions having part a only- Procedure + Conduction + Viva:20 + 50 +10 =80 Marks
 - b) For questions having part a and b Part a- Procedure + Conduction + Viva:10 + 35 +05= 50 Marks
 - Part b- Procedure + Conduction + Viva:10 + 15 +05= 30 Marks
- 5. Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.