- 1. Pfleeger: Software Engineering Theory and Practice, 3rd Edition, Pearson Education, 2001. - 2. Waman S Jawadekar: Software Engineering Principles and Practice, Tata McGraw Hill, 2004. ### **NEURAL NETWORKS** Subject Code: 10IS756 Hours/Week: 04 Total Hours: 52 LA. Marks: 25 Exam Hours: 03 Exam Marks: 100 PART - A #### **UNIT - 1** Introduction 7 Hours What is a Neural Network?, Human Brain, Models of Neuron, Neural Networks viewed as directed graphs, Feedback, Network Architectures, Knowledge representation, Artificial Intelligence and Neural Networks. ### UNIT - 2 ## **Learning Processes – 1** 6 Hours Introduction, Error-correction learning, Memory-based learning, Hebbian learning, Competitive learning, Boltzamann learning, Credit Assignment problem, Learning with a Teacher, Learning without a Teacher, Learning tasks, Memory, Adaptation. UNIT – 3 7 Hours **Learning Processes – 2, Single Layer Perceptrons:** Statistical nature of the learning process, Statistical learning theory, Approximately correct model of learning. Single Layer Perceptrons: Introduction, Adaptive filtering problem, Unconstrained optimization techniques, Linear least-squares filters, Least-mean square algorithm, Learning curves, Learning rate annealing techniques, Perceptron, Perceptron convergence theorem, Relation between the Perceptron and Bayes classifier for a Gaussian environment. UNIT – 4 6 Hours **Multilayer Perceptrons** – **1:**Introduction, Some preliminaries, Back-propagation Algorithm, Summary of back-propagation algorithm, XOR problem, Heuristics for making the back-propagation algorithm perform better, Output representation and decision rule, Computer experiment, Feature detection, Back-propagation and differentiation. UNIT – 5 7 Hours **Multilayer Perceptrons** – **2:** Hessian matrix, Generalization, approximation of functions, Cross validation, Network pruning techniques, virtues and limitations of back- propagation learning, Accelerated convergence of back propagation learning, Supervised learning viewed as an optimization problem, Convolution networks. UNIT – 6 6 Hours **Radial-Basic Function Networks** – **1:** Introduction, Cover's theorem on the separability of patterns, Interpolation problem, Supervised learning as an ill-posed Hypersurface reconstruction problem, Regularization theory, Regularization networks, Generalized radial-basis function networks, XOR problem, Estimation of the regularization parameter. UNIT – 7 6 Hours **Radial-Basic Function Networks** – **2, Optimization** – **1:** Approximation properties of RBF networks, Comparison of RBF networks and multilayer Perceptrons, Kernel regression and it's relation to RBF networks, Learning strategies, Computer experiment. Optimization using Hopfield networks: Traveling salesperson problem, Solving simultaneous linear equations, Allocating documents to multiprocessors. UNIT – 8 7 Hours # **Optimization Methods – 2:** Iterated gradient descent, Simulated Annealing, Random Search, Evolutionary computation- Evolutionary algorithms, Initialization, Termination criterion, Reproduction, Operators, Replacement, Schema theorem. #### **Text Books:** - Simon Haykin: Neural Networks A Comprehensive Foundation, 2nd Edition, Pearson Education, 1999. (Chapters 1.1-1.8, 2.1-2.15, 3.1-3.10, 4.1-4.19, 5.1-5.14) - Kishan Mehrotra, Chilkuri K. Mohan, Sanjay Ranka: Artificial Neural Networks, Penram International Publishing, 1997. (Chapters 7.1-7.5) ## **Reference Books:** 1. B. Yegnanarayana: Artificial Neural Networks, PHI, 2001.