- 1. Pfleeger: Software Engineering Theory and Practice, 3rd Edition, Pearson Education, 2001.
- 2. Waman S Jawadekar: Software Engineering Principles and Practice, Tata McGraw Hill, 2004.

NEURAL NETWORKS

Subject Code: 10IS756

Hours/Week: 04

Total Hours: 52

LA. Marks: 25

Exam Hours: 03

Exam Marks: 100

PART - A

UNIT - 1

Introduction 7 Hours

What is a Neural Network?, Human Brain, Models of Neuron, Neural Networks viewed as directed graphs, Feedback, Network Architectures, Knowledge representation, Artificial Intelligence and Neural Networks.

UNIT - 2

Learning Processes – 1

6 Hours

Introduction, Error-correction learning, Memory-based learning, Hebbian learning, Competitive learning, Boltzamann learning, Credit Assignment problem, Learning with a Teacher, Learning without a Teacher, Learning tasks, Memory, Adaptation.

UNIT – 3 7 Hours

Learning Processes – 2, Single Layer Perceptrons: Statistical nature of the learning process, Statistical learning theory, Approximately correct model of learning.

Single Layer Perceptrons: Introduction, Adaptive filtering problem, Unconstrained optimization techniques, Linear least-squares filters, Least-mean square algorithm, Learning curves, Learning rate annealing techniques, Perceptron, Perceptron convergence theorem, Relation between the Perceptron and Bayes classifier for a Gaussian environment.

UNIT – 4 6 Hours

Multilayer Perceptrons – **1:**Introduction, Some preliminaries, Back-propagation Algorithm, Summary of back-propagation algorithm, XOR problem, Heuristics for making the back-propagation algorithm perform better, Output representation and decision rule, Computer experiment, Feature detection, Back-propagation and differentiation.

UNIT – 5 7 Hours

Multilayer Perceptrons – **2:** Hessian matrix, Generalization, approximation of functions, Cross validation, Network pruning techniques, virtues and limitations of back- propagation learning, Accelerated convergence of back propagation learning, Supervised learning viewed as an optimization problem, Convolution networks.

UNIT – 6 6 Hours

Radial-Basic Function Networks – **1:** Introduction, Cover's theorem on the separability of patterns, Interpolation problem, Supervised learning as an ill-posed Hypersurface reconstruction problem, Regularization theory, Regularization networks, Generalized radial-basis function networks, XOR problem, Estimation of the regularization parameter.

UNIT – 7 6 Hours

Radial-Basic Function Networks – **2, Optimization** – **1:** Approximation properties of RBF networks, Comparison of RBF networks and multilayer Perceptrons, Kernel regression and it's relation to RBF networks, Learning strategies, Computer experiment.

Optimization using Hopfield networks: Traveling salesperson problem, Solving simultaneous linear equations, Allocating documents to multiprocessors.

UNIT – 8 7 Hours

Optimization Methods – 2:

Iterated gradient descent, Simulated Annealing, Random Search, Evolutionary computation- Evolutionary algorithms, Initialization, Termination criterion, Reproduction, Operators, Replacement, Schema theorem.

Text Books:

- Simon Haykin: Neural Networks A Comprehensive Foundation, 2nd Edition, Pearson Education, 1999. (Chapters 1.1-1.8, 2.1-2.15, 3.1-3.10, 4.1-4.19, 5.1-5.14)
- Kishan Mehrotra, Chilkuri K. Mohan, Sanjay Ranka: Artificial Neural Networks, Penram International Publishing, 1997. (Chapters 7.1-7.5)

Reference Books:

1. B. Yegnanarayana: Artificial Neural Networks, PHI, 2001.