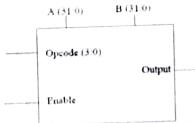
HDL LAB

B.E., V Semester, ELECTRONICS & COMMUNICATION ENGINEERING / TELECOMMUNICATION ENGINEERING [As per Choice Based Credit System (CBCS) Scheme]

Course Code	17ECL58	CIE Marks	40
Number of Lecture	01 Hr Tutorial (Instructions) + 02 Hours Laboratory = 03	SEE Marks	60
Hours/Week			03
RBT Levels	L1, L2, L3	Exam Hours	03

CREDITS - 02

Course Objectives: This course will enable students to:


- Familiarize with the CAD tool to write HDL programs.
- Understand simulation and synthesis of digital design.
- Program FPGAs/CPLDs to synthesize the digital designs.
- Interface hardware to programmable ICs through I/O ports.
- Choose either Verilog or VHDL for a given Abstraction level.

Note: Programming can be done using any compiler. Download the programs on a FPGA/CPLD boards such as Apex/Acex/Max/Spartan/Sinfi or equivalent and performance testing may be done using 32 channel pattern generator and logic analyzer apart from verification by simulation with tools such as Altera/Modelsim or equivalent.

Laboratory Experiments

Part-A: PROGRAMMING

- 1. Write Verilog code to realize all the logic gates
- 2. Write a Verilog program for the following combinational designs
 - a. 2 to 4 decoder
 - b. 8 to 3 (encoder without priority & with priority)
 - c. 8 to 1 multiplexer.
 - d. 4 bit binary to gray converter
 - e. Multiplexer, de-multiplexer, comparator.
- 3. Write a VHDL and Verilog code to describe the functions of a Full Adder using three modeling styles.
- 4. Write a Verilog code to model 32 bit ALU using the schematic diagram shown below

- ALU should use combinational logic to calculate an output based on the four bit
- ALU should pass the result to the out bus when enable line in high, and tri-state the out bus when the enable line is low.
- ALU should decode the 4 bit op-code according to the example given below.

OPCODE	ALU Operation
1.	A+B
2.	A-B
3.	A Complement
4.	A*B
5.	A AND B
6.	A OR B
7.	A NAND B
8.	A XOR B

- 5. Develop the Verilog code for the following flip-flops, SR, D, JK and T.
- 6. Design a 4 bit binary, BCD counters (Synchronous reset and Asynchronous reset) and "any sequence" counters, using Verilog code.

Part-B: INTERFACING (at least four of the following must be covered using VHDL/Verilog)

- 1. Write HDL code to display messages on an alpha numeric LCD display.
- 2. Write HDL code to interface Hex key pad and display the key code on seven segment display.
- 3. Write HDL code to control speed, direction of DC and Stepper motor.
- 4. Write HDL code to accept Analog signal, Temperature sensor and display the data on LCD or Seven segment display.
- 5. Write HDL code to generate different waveforms (Sine, Square, Triangle, Ramp etc.,) using DAC change the frequency.
- 6. Write HDL code to simulate Elevator operation.

Course Outcomes: At the end of this course, students should be able to:

- Write the Verilog/VHDL programs to simulate Combinational circuits in Dataflow, Behavioral and Gate level Abstractions.
- Describe sequential circuits like flip flops and counters in Behavioral description and obtain simulation waveforms.
- Synthesize Combinational and Sequential circuits on programmable ICs and test the hardware.
- Interface the hardware to the programmable chips and obtain the required output.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- 3. Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

D,V.

H.O.D.

Dept. Of Electronics & Communication Alva' Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225