DIGITAL ELECTRONICS LAB SEMESTER - III (EC/TC)

Laboratory Code	17ECL38	CIE Marks	40
Number of Lecture Hours/Week RBT Level	01Hr Tutorial (Instructions) + 02 Hours Laboratory	SEE Marks	60
	L1, L2, L3	Exam Hours	03

CREDITS - 02

Course objectives: This laboratory course enables students to get practical experience in design, realisation and verification of

- Demorgan's Theorem, SOP, POS forms
- Full/Parallel Adders, Subtractors and Magnitude Comparator
- Demultiplexers and Decoders applications
- Flip-Flops, Shift registers and Counters

NOTE:

- Use discrete components to test and verify the logic gates. The IC umbers given are suggestive. Any equivalent IC can be used.
- 2. For experiment No. 11 and 12 any open source or licensed simulation tool may be used.

Laboratory Experiments:

- 1. Verify
 - (a) Demorgan's Theorem for 2 variables.
 - (b) The sum-of product and product-of-sum expressions using universal gates.
- 2. Design and implement
 - (a) Full Adder using (i) basic logic gates and (ii) NAND gates.
 - (b) Full subtractor using (i) basic logic gates and (ii) NANAD gates.
- 3. Design and implement 4-bit Parallel Adder/ Subtractor using IC 7483.
- 4. Design and Implementation of 5-bit Magnitude Comparator using IC 7485.
- 5. Realize

9. Realize

- (a) Adder & Subtractor using IC 74153.
- (b) 3-variable function using IC 74151(8:1MUX).
- 6. Realize a Boolean expression using decoder IC74139.
- 7. Realize Master-Slave JK, D & T Flip-Flops using NAND Gates.
- 8. Realize the following shift registers using IC7474/IC 7495
- (a) SISO (b) SIPO (c) PISO (d) PIPO (e) Ring and (f) Johnson counter. (i) Mod-N Asynchronous Counter using IC7490 and
 - (ii) Mod-N Synchronous counter using IC74192
- 10. Design Pseudo Random Sequence generator using 7495.

- 11. Simulate Full- Adder using simulation tool.
- 12. Simulate Mod-8 Synchronous UP/DOWN Counter using simulation tool.

Course Outcomes: On the completion of this laboratory course, the students will be

- Demonstrate the truth table of various expressions and combinational circuits
- Design and test various combinational circuits such as adders, subtractors, comparators, multiplexers.
- Realize Boolean expression using decoders.
- Construct and test flips-flops, counters and shift registers.
- Simulate full adder and up/down counters.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

H.O.D.

D.V. T

Dept. Of Electronics & Communication Alva' Institute of Engg & Technology Mijar, MOODBIDRI - 574 225