	ANALOG ELECTRONICS LABOR SEMESTER – III (EC/TC) [As per Choice Based Credit System (C		
Laboratory Code	17ECL37	CIE Marks	40
Number of Lecture Hours/Week	01Hr Tutorial (Instructions) + 02 Hours Laboratory	SEE Marks	60
RBT Level	L1, L2, L3	Exam Hours	03

CREDITS - 02

Course objectives: This laboratory course enables students to get practical experience in design, assembly, testing and evaluation of:

- Rectifiers and Voltage Regulators.
- BJT characteristics and Amplifiers.
- JFET Characteristics and Amplifiers.
- MOSFET Characteristics and Amplifiers
- Power Amplifiers.
- RC-Phase shift, Hartley, Colpitts and Crystal Oscillators.

NOTE: The experiments are to be carried using discrete components only.

Laboratory Experiments:

- 1. Design and set up the following rectifiers with and without filters and to determine ripple factor and rectifier efficiency:
 - (a) Full Wave Rectifier

6

- (b) Bridge Rectifier
- 2. Conduct experiment to test diode clipping (single/double ended) and clamping circuits (positive/negative).
- 3. Conduct an experiment on Series Voltage Regulator using Zener diode and power transistor to determine line and load regulation characteristics.
- Realize BJT Darlington Emitter follower with and without bootstrapping and determine the gain, input and output impedances.
- Design and set up the BJT common emitter amplifier using voltage divider bias with and without feedback and determine the gain- bandwidth product from its frequency response.
- 6. Plot the transfer and drain characteristics of a JFET and calculate its drain resistance, mutual conductance and amplification factor.
- 7. Design, setup and plot the frequency response of Common Source JFET/MOSFET amplifier and obtain the bandwidth.

- 8. Plot the transfer and drain characteristics of n-channel MOSFET and calculate its parameters, namely; drain resistance, mutual conductance and amplification factor.
- 9. Set-up and study the working of complementary symmetry class B push pull power amplifier and calculate the efficiency.
- 10. Design and set-up the RC-Phase shift Oscillator using FET, and calculate the frequency of output waveform.
- 11. Design and set-up the following tuned oscillator circuits using BJT, and determine the frequency of oscillation.
- (a) Hartley Oscillator (b) Colpitts Oscillator
- 12. Design and set-up the crystal oscillator and determine the frequency of oscillation.

Course Outcomes: On the completion of this laboratory course, the students will be able to:

- Test circuits of rectifiers, clipping circuits, clamping circuits and voltage regulators.
- Determine the characteristics of BJT and FET amplifiers and plot its frequency response.
- Compute the performance parameters of amplifiers and voltage regulators
- Design and test the basic BJT/FET amplifiers, BJT Power amplifier and oscillators.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

H. O. D.

Dept. Of Electronics & Communication Alva'r institute of Engg. & Technology Mijar, MOODBIDRI - 574 2.25