Radar Engineering

B.E., VIII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC833	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (8 Hours / Module)	Exam Hours	03
Lecture Hours			

CREDITS - 03

Course objectives: This course will enable students to:

- Understand the Radar fundamentals and analyze the radar signals.
- · Understand various technologies involved in the design of radar transmitters and receivers.
- Learn various radars like MTI, Doppler and tracking radars and their comparison

Modules	RBT Level	
Module-1		
Basics of Radar: Introduction, Maximum Unambiguous Range, Radar	L1, L2,	
Waveforms, Definitions with respect to pulse waveform - PRF, PRI, Duty Cycle,		
Peak Transmitter Power, Average transmitter Power.		
Simple form of the Radar Equation, Radar Block Diagram and Operation,		
Radar Frequencies, Applications of Radar, The Origins of Radar, Illustrative		
Problems. (Chapter 1 of Text)		
Module-2		
The Radar Equation: Prediction of Range Performance, Detection of signal in	L1, L2,	
Noise, Minimum Detectable Signal, Receiver Noise, SNR, Modified Radar	L3	
Range Equation, Envelope Detector — False Alarm Time and Probability,		
Probability of Detection,		
Radar Cross Section of Targets: simple targets - sphere, cone-sphere,		
Transmitter Power, PRF and Range Ambiguities, System Losses (qualitative		
treatment), Illustrative Problems. (Chapter 2 of Text, Except 2.4, 2.6, 2.8 &		
2.11)		
Module-3	L1, L2,	
MTI and Pulse Doppler Radar: Introduction, Principle, Doppler Frequency		
Shift, Simple CW Radar, Sweep to Sweep subtraction and Delay Line		
Canceler, MTI Radar with – Power Amplifier Transmitter, Delay Line Cancelers		
— Frequency Response of Single Delay- Line Canceler, Blind Speeds, Clutter		
Attenuation, MTI Improvement Factor, N- Pulse Delay-Line Canceler, Digital MTI Processing – Blind phases, I and Q Channels, Digital MTI		
Doppler signal processor, Moving Target Detector- Original MTD. (Chapter 3:		
3.1, 3.2, 3.5, 3.6 of Text) Module-4		
	L1, L2,	
Tracking Radar:	L1, L2,	
Tracking with Radar- Types of Tracking Radar Systems, Monopulse Tracking- Amplitude Comparison Monopulse (one-and two-coordinates), Phase		
	Bayer of St.	
Comparison Monopulse.		
Sequential Lobing, Conical Scan Tracking, Block Diagram of Conical Scan		

Tracking Radar, Tracking in Range, Comparison of Trackers. (Chapter 4: 4.1,	
4.2, 4.3 of Text)	
Module-5	L1, L2,
The Radar Antenna: Functions of The Radar Antenna, Antenna Parameters,	
Reflector Antennas and Electronically Steered Phased array Antennas.	L3
(Chapter 9: 9.1, 9.2 9.4, 9.5 of Text)	
Radar Receiver: The Radar Receiver, Receiver Noise Figure, Super	
Heterodyne Receiver, Duplexers and Receivers Protectors, Radar Displays.	
(Chapter 11 of Text)	

Course outcomes: At the end of the course, students will be able to:

- Understand the radar fundamentals and radar signals.
- Explain the working principle of pulse Doppler radars, their applications and limitations
- Describe the working of various radar transmitters and receivers.
- Analyze the range parameters of pulse radar system which affect the system performance

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Introduction to Radar Systems-Merrill I Skolink, 3e, TMH, 2001.

Reference Books:

- 1. Radar Principles, Technology, Applications Byron Edde, Pearson Education, 2004.
- 2. Radar Principles Peebles. Jr, P.Z. Wiley. New York, 1998.
- 3. Principles of Modem Radar: Basic Principles Mark A. Rkhards, James A. Scheer, William A. Holm. Yesdee, 2013

H.O.D.

7.V.

Dept. Of Electronics & Communication Alva's Institute of Electronic & Technology Mijar, MCOUBLERI - 674 225