Micro Electro Mechanical Systems B.E., VIII Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC831	IA Marks	20		
Number of Lecture	03	Exam	80		
Hours/Week		marks			
Total Number of	40	Exam	03		
Lecture Hours	(8 Hours per Module)	Hours			
CREDITS - 03					
Course Objectives: This course will enable students to:					
 Understand overview of microsystems, their fabrication and 					
application areas.					
 Working principles of several MEMS devices. 					
 Develop mathematical and analytical models of MEMS devices. 					
 Know methods to fabricate MEMS devices. 					
 Various application areas where MEMS devices can be used. 					
Module 1			RBT		
10 to	<u> </u>			Level	
Overview of MEMS and Microsystems: MEMS and Microsystem,				L1, L2	
Typical MEMS and Microsystems Products, Evolution of				,	
Microfabrication, Microsystems and Microelectronics,					
Multidisciplinary Nature of Microsystems, Miniaturization.					
Applications and Markets.					
	Module 2				
Working Princi	ples of Microsystem	s: Introd	luction,	L1, L2	
Microsensors, Microactuation, MEMS with Microactuators,					
Microaccelerometers, Microfluidics.					
	ence for Microsystem	is Design	and		
Fabrication: Introduction, Molecular Theory of Matter and Inter-					
molecular Forces, Plasma Physics, Electrochemistry.					
Module 3					
Engineering Mechanics for Microsystems Design: Introduction,				L1,L2,L3	
Static Bending of Thin Plates, Mechanical Vibration				21,22,20	
Thermomechanics, Fracture Mechanics, Thin Film Mechanics,					
Overview on Finite Element Stress Analysis.					
	•				

Module 4

Scaling Laws in Miniaturization:	Introduction, Scaling in	L1,L2,L3			
Geometry, Scaling in Rigid-Body	Dynamics, Scaling in	Я			
Electrostatic Forces, Scaling in Fluid Mechanics, Scaling in Heat					
Transfer.					
Module 5					
Overview of Micromanufacturin	g: Introduction, Bulk	L1,L2			
Micromanufacturing, Surface Micromachining, The LIGA Process,					
Summary on Micromanufacturing.					

Course Outcomes: After studying this course, students will be able to:

- Appreciate the technologies related to Micro Electro Mechanical Systems.
- Understand design and fabrication processes involved with MEMS devices.
- Analyse the MEMS devices and develop suitable mathematical models
- Know various application areas for MEMS device

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of Three sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Tai-Ran Hsu, MEMS and Micro systems: Design, Manufacture and Nanoscale Engineering, 2nd Ed, Wiley.

Reference Books:

- 1. Hans H. Gatzen, Volker Saile, JurgLeuthold, Micro and Nano Fabrication: Tools and Processes, Springer, 2015.
- 2. Dilip Kumar Bhattacharya, Brajesh Kumar Kaushik, Microelectromechanical Systems (MEMS), Cenage Learning.

H.O.D.

D.V.A

Dept. Of Electronics & Communication Alva's Institute of Engg. & Technology Mijar, MOODSIDRI - 574 225

152