FIBER OPTICS and NETWORKS

B.E., VIII Semester, Electronics & Communication Engineering
[As per Choice Based Credit System (CBCS)]

Subject Code	15EC82	IA Marks	20	
Number of Lecture Hours/Week	4	Exam Marks	80	
Total Number of Lecture Hours	50(10 Hours / Module)	Exam Hours	03	
CREDITS – 04				

Course Objectives: This course will enable students to:

- Learn the basic principle of optical fiber communication with different modes of light propagation.
- Understand the transmission characteristics and losses in optical fiber.
- Study of optical components and its applications in optical communication networks.
- Learn the network standards in optical fiber and understand the network architectures along with its functionalities.

Module -1	RBT Level		
Optical fiber Communications: Historical development, The	L1, L2		
general system, Advantages of optical fiber communication,			
Optical fiber waveguides: Ray theory transmission, Modes in			
planar guide, Phase and group velocity, Cylindrical fiber: Modes,			
Step index fibers, Graded index fibers, Single mode fibers,			
Cutoff wavelength, Mode field diameter, effective refractive			
index. Fiber Materials, Photonic crystal fibers. (Text 2)			
Module -2			
Transmission characteristics of optical fiber: Attenuation,	L1, L2		
Material absorption losses, Linear scattering losses, Nonlinear			
scattering losses, Fiber bend loss, Dispersion, Chromatic			
dispersion, Intermodal dispersion: Multimode step index fiber.			
Outil Dilan Comments on Dilan aliminata and initial Dilan			
Optical Fiber Connectors: Fiber alignment and joint loss, Fiber			
splices, Fiber connectors, Fiber couplers. (Text 2)			
Module -3			
Optical sources: Energy Bands, Direct and Indirect Bandgaps,	L1, L2		
Light Emitting diodes: LED Structures, Light Source Materials,			
Quantum Efficiency and LED Power, Modulation. Laser			
Diodes: Modes and Threshold conditions, Rate equation,			
External Quantum Efficiency, Resonant frequencies, Laser			
Diode structures and Radiation Patterns: Single mode lasers.			
Photodetectors: Physical principles of Photodiodes,			
Photodetector noise, Detector response time.			
Optical Receiver: Optical Receiver Operation: Error sources,			

Front End Amplifiers, Receiver sensitivity, Quantum Limit. (Text 1)	
Module -4	71.70
WDM Concepts and Components: Overview of WDM:	L1, L2
Operational Principles of WDM, WDM standards, Mach-Zehnder	
Interferometer Multiplexers, Isolators and Circulators, Fiber	
grating filters, Dielectric Thin-Film Filters, Diffraction Gratings,	
Active Optical Components, Tunable light sources,	
Optical amplifiers: Basic application and Types, Semiconductor	
optical amplifiers, Erbium Doped Fiber Amplifiers, Raman	
Amplifiers, Wideband Optical Amplifiers. (Text 1)	
Module -5	
	L1, L2
Optical Networks: Optical network evolution and concepts:	D1, D2
Optical networking terminology, Optical network node and	
switching elements, Wavelength division multiplexed networks,	
Public telecommunication network overview. Optical network	
transmission modes, layers and protocols: Synchronous	
networks, Asynchronous transfer mode, OSI reference model,	
Optical transport network, Internet protocol, Wavelength	
routing networks: Routing and wavelength assignment, Optical	
switching networks: Optical circuit switched networks, packet	
switched networks, Multiprotocol Label Switching, Optical	
burst switching networks, Optical network deployment: Long-	
haul networks, Metropoliton area networks, Access networks,	
Local area networks. (Text 2)	

Course Outcomes: At the end of the course, students will be able to:

- 1. Classification and working of optical fiber with different modes of signal propagation.
- 2. Describe the transmission characteristics and losses in optical fiber communication.
- 3. Describe the construction and working principle of optical connectors, multiplexers and amplifiers.
- 4. Describe the constructional features and the characteristics of optical sources and detectors.
- 5. Illustrate the networking aspects of optical fiber and describe various standards associated with it.

Question Paper pattern:

- The Question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be 2 full Questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The Students will have to answer 5 full Questions, selecting one full Question from each module.

Text Books:

1. Gerd Keiser, Optical Fiber Communication, 5th Edition, McGraw Hill

Education(India) Private Limited, 2015. ISBN:1-25-900687-5.

2. John M Senior, Optical Fiber Communications, Principles and Practice, 3rd Edition, Pearson Education, 2010, ISBN:978-81-317-3266-3

Reference Book:

Joseph C Palais, Fiber Optic Communication, Pearson Education, 2005, ISBN:0130085103

Dept. Of Electronics & Communication Alva' - Institute of Engli % Technology Mijar, MOODBIORI - 574 420