PATTERN RECOGNITION

B.E., VII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC753	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours	,			
CDEDITO 00				

CREDITS - 03

Course Objectives: The objectives of this course are to:

- Introduce mathematical tools needed for Pattern Recognition
- Impart knowledge about the fundamentals of Pattern Recognition.
- Provide knowledge of recognition, decision making and statistical learning problems
- Introduce parametric and non-parametric techniques, supervised learning and clustering concepts of pattern recognition

Modules				
Module-1	RBT Level			
Introduction: Importance of pattern recognition, Features, Feature Vectors, and Classifiers, Supervised, Unsupervised, and Semi-supervised learning, Introduction to Bayes Decision Theory, Discriminant Functions and Decision Surfaces, Gaussian PDF and Bayesian Classification for Normal Distributions.				
Module-2				
Data Transformation and Dimensionality Reduction: Introduction, Basis Vectors, The Karhunen Loeve (KL) Transformation, Singular Value Decomposition, Independent Component Analysis (Introduction only). Nonlinear Dimensionality Reduction, Kernel PCA.				
Module-3				
Estimation of Unknown Probability Density Functions: Maximum Likelihood Parameter Estimation, Maximum a Posteriori Probability estimation, Bayesian Interference, Maximum Entropy Estimation, Mixture Models, Naive-Bayes Classifier, The Nearest Neighbor Rule.				
Module-4				
Linear Classifiers: Introduction, Linear Discriminant Functions and Decision Hyperplanes, The Perceptron Algorithm, Mean Square Error Estimate, Stochastic Approximation of LMS Algorithm, Sum of Error Estimate.	L1, L2, L3			
Module-5				
Nonlinear Classifiers: The XOR Problem, The two Layer Perceptron, Three Layer Perceptron, Back propagation Algorithm, Basic Concepts of Clustering, Introduction to Clustering, Proximity Measures.				

Course outcomes: At the end of the course, students will be able to:

- Identify areas where Pattern Recognition and Machine Learning can offer a solution.
- Describe the strength and limitations of some techniques used in computational Machine Learning for classification, regression and density estimation problems
- Describe genetic algorithms, validation methods and sampling techniques
- Describe and model data to solve problems in regression and classification
- Implement learning algorithms for supervised tasks

Question paper pattern:

The question paper will have ten questions.

- · Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Pattern Recognition: Sergios Theodoridis, Konstantinos Koutroumbas, Elsevier India Pvt. Ltd (Paper Back), 4th edition.

Reference Books:

- 1. The Elements of Statistical Learning: Trevor Hastie, Springer-Verlag New York, LLC (Paper Back), 2009.
- 2. Pattern Classification: Richard O. Duda, Peter E. Hart, David G. Stork. John Wiley & Sons, 2012.
- **3.** Pattern Recognition and Image Analysis Earl Gose: Richard Johnsonbaugh, Steve Jost, ePub eBook.

H.O.D.

DU-D

Dept. Of Electronics & Communication Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225