IoT & WIRELESS SENSOR NETWORKS B.E., VII Semester, Electronics & Communication Engineering /Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme] | Subject Code | 15EC752 | IA Marks | 20 | |----------------------------------|-----------------------|------------|----| | Number of Lecture
Hours/Week | 03 | Exam Marks | 80 | | Total Number of
Lecture Hours | 40 (8 Hours / Module) | Exam Hours | 03 | ## CREDITS - 03 Course Objectives: This course will enable students to: - Understand various sources of IoT & M2M communication protocols. - Describe Cloud computing and design principles of IoT. - Become aware of MQTT clients, MQTT server and its programming. - Understand the architecture and design principles of WSNs. - Enrich the knowledge about MAC and routing protocols in WSNs. | Module-1 | RBT Level | | |--|-----------|--| | Overview of Internet of Things: IoT Conceptual Framework, IoT Architectural View, Technology Behind IoT, Sources of IoT,M2M communication, Examples of IoT. Modified OSI Model for the IoT/M2M Systems, data enrichment, data consolidation and device management at IoT/M2M Gateway, web communication protocols used by connected IoT/M2M devices, Message communication protocols (CoAP-SMS, CoAP-MQ, MQTT,XMPP) for IoT/M2M devices. | L1, L2 | | | Module-2 | | | | Architecture and Design Principles for IoT: Internet connectivity, Internet-based communication, IPv4, IPv6, 6LoWPAN protocol, IP Addressing in the IoT, Application layer protocols: HTTP, HTTPS, FTP, TELNET and ports. | | | | Data Collection, Storage and Computing using a Cloud Platform: Introduction, Cloud computing paradigm for data collection, storage and computing, Cloud service models, IoT Cloud- based data collection, storage and computing services using Nimbits. | | | | Module-3 | | | | Prototyping and Designing Software for IoT Applications: Introduction Prototyping Embedded device software, Programming Embedded Devices Arduino Platform using IDE, Reading data from sensors and devices, Devices, Gateways, Internet and Web/Cloud services software development. | | |---|------------| | Programming MQTT clients and MQTT server. Introduction to IoT privacy and security. Vulnerabilities, security requirements and threat analysis, IoT Security Tomography and layered attacker model. | | | Module-4 | | | Overview of Wireless Sensor Networks:
Challenges for Wireless Sensor Networks, Enabling Technologies for
Wireless Sensor Networks. | L1, L2, L3 | | Architectures: Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture-Sensor Network Scenarios, Optimization Goals and Figures of Merit, Design principles for WSNs, Service interfaces of WSNs Gateway Concepts. | | | Module-5 | | | Communication Protocols: Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC , The Mediation Device Protocol, Wakeup Radio Concepts, Contention based protocols(CSMA,PAMAS), Schedule based protocols (LEACH, SMACS, TRAMA) Address and Name Management in WSNs, Assignment of MAC Addresses, Routing Protocols- Energy-Efficient Routing, Geographic Routing, Hierarchical networks by clustering. | | | Course Outcomes: At the end of the course, students will be able to: Describe the OSI Model for the IoT/M2M Systems. Understand the architecture and design principles for IoT. Learn the programming for IoT Applications. Identify the communication protocols which best suits the WSNs. | | | Question paper pattern: | | - The question paper will have ten questions. - Each full Question consisting of 16 marks. - There will be 2 full questions (with a maximum of Three sub questions) from each module. - Each full question will have sub questions covering all the topics under a module. - The students will have to answer 5 full questions, selecting one full question from each module. ## Text Books: - 1. Raj Kamal, "Internet of Things-Architecture and design principles". McGraw Hill Education. - 2. Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005. - 3. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007. ## Reference Books: - 1. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, And Applications", John Wiley, 2007. - 2. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003. Dept. Of Electronics & Communication Alva' Institute of Eagy & Technology Mijar, MOODBIOSI - 574 222