CAD for VLSI

B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC745	IA Marks	20		
Number of Lecture	03	Exam	80		
Hours/Week		marks			
Total Number of	40	Exam	03		
Lecture Hours	(8 Hours per Module)	Hours			
CREDITS - 03					
Course Objectives: This course will enable students to:					
Understand various stages of Physical design of VLSI circuits					
Know about mapping a design problem to a realizable algorithm					
Become aware of graph theoretic, heuristic and genetic algorithms					
Compare performance of different algorithms					
Modules			RBT		
				Level	
Module 1					
Data Structures and Basic Algorithms:				L1, L2	
Basic terminology, Complexity issues and NP-Hardness.					
Examples - Exponential, heuristic, approximation and special					
cases. Basic Algorithms. Graph Algorithms for Search, spanning					
tree, shortest path, min-cut and max-cut, Steiner tree.					
Computational Geometry Algorithms: Line sweep and extended					
line sweep methods.					
Module 2					
Basic Data Structures. Atomic operations for layout editors,				L1, L2	
Linked list of blocks, Bin-based method, Neighbor pointers,					
corner-stitching, Multi-layer operations, Limitations of existing				4	
data structures. Layout specification languages.					
Graph algorithms for physical design: Classes of graphs in					
physical design, Relationship between graph classes, Graph					
problems in physical design, Algorithms for Interval graphs,					
permutation graphs and circle graphs.					

Module 3

Partitioning: Problem formulation, Design style specific partitioning problems, Classification of Partitioning Algorithms.				
Group migration algorithms: Kernighan-Lin algorithm, Fiduccia-Mattheyses Algorithm, Simulated Annealing, Simulated Evolution.				
Floor Planning: Problem formulation, Constraint based floor planning, Rectangular dualization, Simulated evolution algorithms.				
Module 4	L			
Pin Assignment : Problem formulation. Classification of pin assignment problems, General pin assignment problem.	L1,L2,L3			
Placement: Problem formulation, Classification of placement algorithms. Simulation based placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement.				
Module 5				
Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms.				
Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem.				
Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2.				
Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms				
Question paper pattern:				
The question paper will have 10 full questions carrying equal marks.				

- Each full question consists of 16 marks with a maximum of Three sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Algorithms for VLSI Physical Design Automation, 3rd Ed, Naveed Sherwani, 1999 Kluwer Academic Publishers, Reprint 2009 Springer (India) Private Ltd. ISBN 978-81-8128-317-7.

H. O. D.

Dept. Of Electronics & Communication Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225