VLSI Design

B.E., VI Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code 15EC63	IA Marks	20
Number of Lecture 04	Exam Marks	80
Hours/Week		
Total Number of 50 (10 Hours / Module) Lecture Hours	Exam Hours	03

CREDITS - 04

Course Objectives: The objectives of the course is to enable students to:

- Impart knowledge of MOS transistor theory and CMOS technologies
- Impart knowledge on architectural choices and performance tradeoffs involved in designing and realizing the circuits in CMOS technology
- Cultivate the concepts of subsystem design processes
- · Demonstrate the concepts of CMOS testing

Module-1	RBT	
	Level	
Introduction: A Brief History, MOS Transistors, MOS Transistor Theory,	L1, L2	
Ideal I-V Characteristics, Non-ideal I-V Effects, DC Transfer Characteristics		
(1.1, 1.3, 2.1, 2.2, 2.4, 2.5 of TEXT2).		
Fabrication: nMOS Fabrication, CMOS Fabrication [P-well process, N-well		
process, Twin tub process], BiCMOS Technology (1.7, 1.8,1.10 of TEXT1).		
Module-2		
MOS and BiCMOS Circuit Design Processes: MOS Layers, Stick Diagrams,	L1, L2,	
Design Rules and Layout.	L3	
Basic Circuit Concepts: Sheet Resistance, Area Capacitances of Layers,		
Standard Unit of Capacitance, Some Area Capacitance Calculations, Delay		
Unit, Inverter Delays, Driving Large Capacitive Loads (3.1 to 3.3, 4.1, 4.3 to		
4.8 of TEXT1).		
Module-3		
Scaling of MOS Circuits: Scaling Models & Scaling Factors for Device	L1, L2,	
Parameters	L3	
Subsystem Design Processes: Some General considerations, An illustration		
of Design Processes, Illustration of the Design Processes- Regularity.		
Design of an ALU Subsystem, The Manchester Carry-chain and Adder		
Enhancement Techniques (5.1, 5.2, 7.1, 7.2, 8.2, 8.3, 8.4.1, 8.4.2 of TEXT1).		
Module-4		
Subsystem Design: Some Architectural Issues, Switch Logic, Gate(restoring)	L1,	
Logic, Parity Generators, Multiplexers, The Programmable Logic Array (PLA)	L2, L3	
(6.1to 6.3, 6.4.1, 6.4.3, 6.4.6 of TEXT1).	,	
FPGA Based Systems: Introduction, Basic concepts, Digital design and		
FPGA's, FPGA based System design, FPGA architecture, Physical design for		
FPGA's		
(1.1 to 1.4, 3.2, 4.8 of TEXT3).		
Module-5		
Memory, Registers and Aspects of system Timing- System Timing	L1, L2,	
Considerations, Some commonly used Storage/Memory elements (9.1, 9.2 of	L3	
TEXT1).		
IEAIIJ.		

Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability (12.1, 12.1.1, 12.3, 12.5, 12.6 of TEXT 2).

Course outcomes: At the end of the course, the students will be able to:

- Demonstrate understanding of MOS transistor theory, CMOS fabrication flow and technology scaling.
- Draw the basic gates using the stick and layout diagrams with the knowledge of physical design aspects.
- Interpret Memory elements along with timing considerations
- Demonstrate knowledge of FPGA based system design
- Interpret testing and testability issues in VLSI Design
- Analyze CMOS subsystems and architectural issues with the design constraints.

Question paper pattern:

- The question paper will have ten questions
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Books:

- 1. "Basic VLSI Design"- Douglas A. Pucknell& Kamran Eshraghian, PHI 3rd Edition (original Edition 1994).
- 2. "CMOS VLSI Design- A Circuits and Systems Perspective"- Neil H.E. Weste, David Harris, Ayan Banerjee, 3rd Edition, Pearson Education.
- "FPGA Based System Design"- Wayne Wolf, Pearson Education, 2004, Technology and Engineering.

H.O.D.

Dept. Of Electronics & Communication Alva': Institute of Engs & Technology Milar, IMGOBBIOR: - 574 22.