ADAPTIVE SIGNAL PROCESSING

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

par par district Edeca Great System (BBCS) schome				
Subject Code	15EC652	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours	,			
CREDITS – 03				

Course Objectives: The objectives of this course are to:

- Introduce to the concept and need of adaptive filters and popular adaptive signal processing algorithms
- Understand the concepts of training and convergence and the trade-off between performance and complexity.
- Introduce to common linear estimation techniques
- Demonstrate applications of adaptive systems to sample problems.
- Introduce inverse adaptive modelling.

Module-1				
	Level			
Adaptive systems: Definitions and characteristics - applications -				
properties-examples - adaptive linear combiner input signal and weight				
vectors - performance function-gradient and minimum mean square error -				
introduction to filtering-smoothing and prediction - linear optimum filtering-				
orthogonality - Wiener - Hopf equation-performance surface(Chapters 1& 2				
of Text).				
Module-2				
Searching performance surface-stability and rate of convergence:	L1, L2			
Learning curve-gradient search - Newton's method - method of steepest				
descent - comparison - Gradient estimation - performance penalty - variance				
- excess MSE and time constants - mis-adjustments (Chapters 4& 5 of Text).				
Module-3				
LMS algorithm convergence of weight vector: LMS/Newton algorithm -				
properties - sequential regression algorithm - adaptive recursive filters -				
random-search algorithms - lattice structure - adaptive filters with				
orthogonal signals (Chapters 6& 8 of Text).				
Module-4				
Applications-adaptive modeling and system identification: Multipath	L1, L2,			
communication channel, geophysical exploration, FIR digital filter synthesis.				
(Chapter 9 of Text).				
Module-5				
Inverse adaptive modeling: Equalization, and deconvolution adaptive				
equalization of telephone channels-adapting poles and zeros for IIR digital				
filter synthesis(Chapter 10 of Text).				
Course Outcomes: At the end of the course, students should be able to:				

Course Outcomes: At the end of the course, students should be able to

- Devise filtering solutions for optimising the cost function indicating error in estimation of parameters and appreciate the need for adaptation in design.
- · Evaluate the performance of various methods for designing adaptive filters

through estimation of different parameters of stationary random process clearly considering practical application specifications.

• Analyse convergence and stability issues associated with adaptive filter design and come up with optimum solutions for real life applications taking care of

requirements in terms of complexity and accuracy.

• Design and implement filtering solutions for applications such as channel equalisation, interference cancelling and prediction considering present day challenges.

Question paper pattern:

- The question paper will have ten questions
- · Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Bernard Widrow and Samuel D. Stearns, "Adaptive Signal Processing", Person Education, 1985.

Reference Books:

1. Simon Haykin, "Adaptive Filter Theory", Pearson Education, 2003.

2. John R. Treichler, C. Richard Johnson, Michael G. Larimore, "Theory and Design of Adaptive Filters", Prentice-Hall of India, 2002.

D.V. 7

Dept. Of Electronics & Communication Alva's Institute of Engal & Technologic Mijar, MOOUBIDRI - 574 225