ARM MICROCONTROLLER & EMBEDDED SYSTEMS # B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme] ## ARM MICROCONTROLLER & EMBEDDED SYSTEMS ## B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) Scheme] | Course Code | 15EC62 | IA Marks | 20 | |-------------------|------------------------|------------|----| | Number of Lecture | 04 | Exam Marks | 80 | | Hours/Week | | | | | Total Number of | 50 (10 Hours / Module) | Exam Hours | 03 | | Lecture Hours | | | | #### CREDITS - 04 Course objectives: This course will enable students to: - Understand the architectural features and instruction set of 32 bit microcontroller ARM Cortex M3. - Program ARM Cortex M3 using the various instructions and C language for different applications. - Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system. - Develop the hardware software co-design and firmware design approaches. - Explain the need of real time operating system for embedded system applications. ## Module-1 **ARM-32 bit Microcontroller:** Thumb-2 technology and applications of ARM, Architecture of ARM Cortex M3, Various Units in the architecture, Debugging support, General Purpose Registers, Special Registers, exceptions, interrupts, stack operation, reset sequence (Text 1: Ch 1, 2, 3) **L1, L2** ### Module-2 ARM Cortex M3 Instruction Sets and Programming: Assembly basics, Instruction list and description, Useful instructions, Memory mapping, Bit-band operations and CMSIS, Assembly and C language Programming (Text 1: Ch-4, Ch-5, Ch-10 (10.1, 10.2, 10.3, 10.5 only) L1, L2, L3 #### Module-3 **Embedded System Components:** Embedded Vs General computing system, Classification of Embedded systems, Major applications and purpose of ES. Core of an Embedded System including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, Optocoupler, Relay, Piezo buzzer, Push button switch, Communication Interface (onboard and external types), Embedded firmware, Other system components. (Text 2: All the Topics from Ch-1 and Ch-2, excluding 2.3.3.4 (stepper motor), 2.3.3.8 (keyboard) and 2.3.3.9 (PPI) sections). L1, L2, L3 # Module-4 Embedded System Design Concepts: Characteristics and Quality Attributes of Embedded Systems, Operational and non-operational quality attributes, Embedded Systems-Application and Domain specific, Hardware Software Co-Design and Program Modelling (excluding UML), Embedded firmware design and development (excluding C language). (Text 2: Ch-3, Ch-4, Ch-7 (Sections 7.1, 7.2 only), Ch-9 (Sections 9.1, 9.2, 9.3.1, 9.3.2 only) **L1, L2, L3** #### Module-5 RTOS and IDE for Embedded System Design: Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread preemption, Preemptive Task scheduling techniques, Task Communication, Task synchronization issues – Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS, Integration and testing of Embedded hardware and firmware, Embedded system Development Environment – Block diagram (excluding Keil), Disassembler/decompiler, simulator, emulator and debugging techniques (Text 2: Ch-10 (Sections 10.1, 10.2, 10.3, 10.5.2, 10.7, 10.8.1.1, 10.8.1.2, 10.8.2.2, 10.10 only), Ch 12, Ch-13 (a block diagram before 13.1, 13.3, 13.4, 13.5, 13.6 only) L1, L2, L3 Course outcomes: After studying this course, students will be able to: - Describe the architectural features and instructions of 32 bit microcontroller ARM Cortex M3. - Apply the knowledge gained for Programming ARM Cortex M3 for different applications. - Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system. - Develop the hardware /software co-design and firmware design approaches. - Explain the need of real time operating system for embedded system applications. #### Text Books: - Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", 2nd Edition, Newnes, (Elsevier), 2010. - 2. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, 2nd Edition. H.O.D. P.V. Dept. Of Electronics & Communication. Almst - Arstitute of Engg & Technology MEST, MOODE(DK) - 574 22.5